
Enhancing Story Generation with the Semantic Web
Eric LaBouve

California Polytechnic State
University

San Luis Obispo, California
elabouve@calpoly.edu

Erik Miller
California Polytechnic State

University
San Luis Obispo, California

emille26@calpoly.edu

Foaad Khosmood
California Polytechnic State

University
San Luis Obispo, California

foaad@calpoly.edu

ABSTRACT
In story or character driven games, in-game stories are usually
manually authored in advance. As the complexity of interactions in
games increases, the quantity of hand-crafted text typically follows.
Designing stories and composing content by hand is a laborious and
time consuming process that if automated, would speed up game
production and lower development costs. In this paper, we present
a mixed initiative tool to help generalize and enhance context free
grammars (CFGs) for story generation. The tool is designed to
take as input a story generating grammar in addition to generic
keywords for people, places and other various metrics in order to
control the output text. The tool is knowledgeable about a wide
array of topics because it leverages the Semantic Web in order to
extrapolate more details and related information from the user
supplied content. As a result, generated text will contain genuinely
new information, descriptions of characters and locations that were
never written by the author. Although the general structure of a
story or dialogue is somewhat fixed by the nature of grammar rules,
the resulting text can be geared towards a variety of user inputs
and can include details that may surprise designers. The tool is
evaluated by a group of 15 individuals in a user study to gauge the
practicality of using Semantic Web technologies for procedural text
generation. The study concludes that using the Semantic Web is
an effective aid for grammar based text generation. We discuss our
system, the user study and share thoughts on future work.

CCS CONCEPTS
• Information systems→Web crawling; Information retrieval
query processing; Web searching and information discovery; •
Computing methodologies → Information extraction; Sym-
bolic and algebraic algorithms; •Human-centered computing→
Human computer interaction (HCI);

KEYWORDS
Context Free Grammar, Procedural Content Generation, Semantic
Web, Sparql, Resource Description Framework, DBPedia

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7217-6/19/08.
https://doi.org/10.1145/3337722.3337742

ACM Reference Format:
Eric LaBouve, Erik Miller, and Foaad Khosmood. 2019. Enhancing Story
Generation with the Semantic Web. In The Fourteenth International Confer-
ence on the Foundations of Digital Games (FDG ’19), August 26–30, 2019,
San Luis Obispo, CA, USA. ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3337722.3337742

1 INTRODUCTION
One of the most explored areas of procedural text generation is the
use of context free grammars. With enough effort, an author can de-
sign a sophisticated grammar that can generate text output which
can dramatically vary in size and content when grammar rules
are randomly expanded. However, we identify two major limita-
tions to using context free grammars for procedural text generation.
First, writing grammar rules is a time intensive procedure. This is a
consequence of the combinatorial explosion of paths that can be ex-
panded when there are many rules. As a result, it takes a long time
to incorporate many story details. Second, once a set of grammar
rules is written, the rules cannot easily be reused in different con-
texts because the logic and output of the grammar is defined ahead
of time [24]. As a result, authors may resort to writing different
grammars for stories that share similar structure or dynamically
building grammars using general purpose programming languages.
For example, stories often introduce new characters with relevant
background information, such as a character’s place of birth, oc-
cupation, family members, etc. If the author wants to introduce
another character in a similar manner to the first character, the au-
thor would need to derive new character descriptions and compose
a second grammar. These two grammars may contain structural
similarities that can be abstracted into a single set of grammar
rules. Furthermore, coming up with accurate and unique character
descriptions is a time consuming exercise that is of interest for
automation in our research.

Researching ways to write grammar rules that can generalize to
different contexts and produce descriptions that were not explicitly
written by the author ahead of time is an interesting and important
problem in procedural text generation because it has applications
for story telling and other text generation systems. Additionally, it
is also important to empower authors with the ability to control
the level of story descriptions and story length in order to satisfy
author-specific use cases. Such an adaptive grammar could result in
a highly immersive experience for the reader and allow authors to
devote their attention to other important activities. Unfortunately,
building a system that generates believably human-like stories and
dialogues is a Turing-complete problem.

We present a tool that uses SemanticWeb technologies, which are
fundamental tools used by search engines for query answering. Our
tool is knowledgeable on a huge set of topics, pertaining to people



FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA LaBouve et al.

and locations, by leveraging information scraped fromWikipedia. In
order to allow easy access to this data, the structured content from
Wikipedia has been extracted into an ontology database, composed
of many RDF triples, and is sponsored by DBPedia1. Using a query
language called Sparql, we can query for metadata and incorporate
this information into our generated stories.

According to a survey by Kybartas and Bidarra calledA Survey on
Story Generation Techniques for Authoring Computational Narratives
[14], there exists a “burden” on the author to create space, which
relates to everything that exists abstractly in the narrative. Through
the power of Sparql and large RDF data sets, we hypothesize that
Semantic Web technologies can be used to generate more in-depth
text stories in order to help alleviate this burden of creating space
in narratives. Our unique contribution is a mixed initiative tool
that empowers authors with more control over rule expansions,
streamlines the generation of intimate story details, and a grammar
that can be generalized to many use cases. We evaluate our tool by
conducting a user study with 15 individuals. After interacting with
our tool in a variety of different use cases, the participants conclude
that using Semantic Web technologies is an effective way to gener-
ate more in-depth text stories and there are many possibilities for
future research.

The remainder of the paper is structured as follows. Section
2 covers background on Semantic Web technologies and related
research on procedural content generation using Semantic Web
technologies and for story and text generation. Section 3 explains
the implementation of our tool, which will begin by discussing how
Sparql is used to extrapolate semantic information from DBPedia,
then discusses the rules of our grammar, and subsequently goes
over the design of our mixed initiative tool. Afterwards in Section
4, we present an empirical user study of our tool. Lastly, Sections 5
and 6 will present concluding thoughts and future work.

2 BACKGROUND AND RELATED WORK
In this section, we provide a brief background on Semantic Web
technologies and related work that uses SemanticWeb technologies.
Also, we review related work in procedural content generation for
creating text and stories.

2.1 Semantic Web Technologies
The technology that allows Wikipedia to be represented as an
ontology is a metadata model called RDF. RDF, which stands for
Resource Description Framework, is a Semantic Web technology
that was developed by an international standards organization
called World Wide Web Consortium (W3C) to provide ontological
relationships to elements on the web [18]. Many RDF data sets are
hosted by DBPedia, which is self-defined on their website to be a
“crowd-sourced community effort to extract structured content from
the information created in various Wikimedia projects”. Metadata
in the RDF model is expressed as triples: subject, predicate, and
object, which are encoded as URI. For example, an RDF triple, where
the subject is a URI pointing to the DBPedia entity for Barack
Obama2, the predicate is a URI pointing to the DBPedia property

1https://wiki.dbpedia.org/
2http://dbpedia.org/page/Barack_Obama

for spouse3, and the object is a URI pointing to the DBPedia entity
for Michelle Obama4, indicates that Barack Obama and Michelle
Obama are married to each other. RDF is the standard format across
the web because its triple structure allows for easy joins between
many RDF data sets. In order to search through an RDF database, a
query language called Sparql is used. Sparql, which is a recursive
acronym that stands for Sparql Protocol and RDF Query Language,
is designed similarly to SQL and is easy to learn for developers
that are already familiar with relational database query languages.
An example Sparql query can be found in Figure 1, which is fully
explained in Section 3.1.

Semantic Web technologies have found recent uses in procedural
content generation. In the realm of game design, a notable example
comes from the Data Adventures project [2]. The system described
in this research creates game plots based on associations between
Wikipedia articles. Using these associations, the game generates a
sequence of clues, where the player’s goal is to find the location of
a non-playable character. Other researchers have taken procedural
game development a step further by attempting to generate en-
tire games via semantic information extracted from Semantic Web
content [23]. On the other hand, in the space of text generation, Se-
mantic Web technologies have been used to provide the intelligence
for question-answering systems. In Automatic Expressive Opinion
Sentence Generation for Enjoyable Conversational Systems [17] the
authors build a text based conversation program that uses DBPedia
and Sparql in order to generate interesting small-talk. The system
is partly designed to convert a user’s questions into Sparql queries
and to leverage the massive amount of information that can be
found in DBPedia to respond to users with human-like intelligence.

2.2 Procedural Content Generation for Text
and Stories

Context free grammars first arose the 1960’s [24] when Scheinberg
laid out a formal definition based on previous work from Chomsky
[11], stating that a "context free (CF) grammar to be a finite setG of
"rewriting rules" a → ψ , where a is a single symbol andψ is a finite
string of symbols from a finite alphabet (vocabulary) V " [24]. This
has proven to be a simple and useful mechanism for generating
stories, as aspects of the story may be specified ahead of time, with
some parts of the story chosen at random from the vocabulary to
vary the resulting text.

Since the early days of context free grammars, there have been
efforts to generalize grammar rules to fit custom stories [8] and
impose “cause and effect” relationships by defining the relations
between specific story elements and story events [20]. The main
drawback of developing grammar based story generation systems is
that the entire generative space must be defined and written ahead
of time. Thus, generating very large stories becomes an involved
process. However, there has been some work to help expand gram-
mars to require less work from the human author. Evolving stories:
Grammar evolution for automatic plot generation [7] discusses a
human-in-the-loop method to take regular grammar and evolve it
to create novel story points. While we are looking to create novelty
by using outside information, this provides a useful perspective on

3http://dbpedia.org/ontology/spouse
4http://dbpedia.org/page/Michelle_Obama



Enhancing Story Generation with the Semantic Web FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

building a mixed initiative tool on top of a grammar based story
generator.

Propp [21] introduced a way to describe character stereotypes
and general plot themes in the form of “functions.” Propp’s ideas
paved the way for rewrite rules, which consist of symbols and
symbol expansions that are loosely based on grammars. Similar to
how our system allows authors some control over the generated
story, researchers have used rewrite rules to create template based
interactive narrative systems to cooperatively work with computers
to generate a plot [3]. Other mixed initiative tools have empowered
authors to change specific plot events after they have already been
generated [9]. As more research was conducted, rewrite rules were
extended to more complex plot structures and applied to graphs in
order to model higher dimensional relationships [15].

Context free grammars and rewrite rules laid the foundation
for story generation using search based approaches. Procedural
Content Generation in Games: A Textbook and an Overview of Cur-
rent Research [25] outlines planning based approaches to generate
game stories and NPC behavior. From the concepts described in
this textbook and other research, many variations of text and plot
generation using symbolic search have been published. For exam-
ple, Cheong et al. demonstrates that if the components of a story
are decomposed into operators, which consist of pre and post con-
ditions, then generating a story can be represented as a search
problem within a “state” or “plan” space [10]. The authors demon-
strate that operators can be encoded as propositional logic in the
form of either a STRIPS[12] or an ADL[13] style planning repre-
sentation, two languages designed to formally describe the process
of planning and enable automated decision making. Using proposi-
tional logic with pre and post conditions has also shown to be an
effective way to influence story telling in other research projects
[27]. Another algorithmic approach titled Ice-Bound: Combining
Richly-Realized Story with Expressive Gameplay [22] generates sto-
ries using a middle ground algorithm that builds continuous, small,
reversible choices. Their algorithm marries branching-path and
simulations story telling approaches to allow players to participate
in story generation. The authors note that stories generated using
only branch-path algorithms are limited because they lead to a
combinatorial explosion of possible plot lines and for interactive
stories. We hope that some of the techniques introduced in our
research can help alleviate this problem.

While search and planning has allowed authors to control the
sequence of story events, some researchers have used planning
to create surprise and drama. One research endeavor to stimulate
surprise is through the use of foreshadowing and flashbacks [5]. Al-
though this research takes advantage of story telling techniques to
surprise the user, our research aims to surprise the user by incorpo-
rating intimate knowledge from DBPedia. Additionally, (Re)telling
Chess Stories as Game Content [6] is a research project that uses
chess game-play traces to generate dramatic stories with a high
degrees of variation. In their paper, Buckthal and Khosmood hy-
pothesize that since playing chess can invoke a sense of drama and
entertainment, both between the two players and for spectators,
then a story generated from a game of chess may also embody these
elements. The downside to their system is that the variability of
their stories is limited by the number of story skins their system has
available to use because they are written manually (their examples

include a Zombie Apocalypse and Romeo and Juliet). A tool that
takes advantage of the SemanticWebmay be able to help streamline
skin generation by inferring details from other well known stories
such as Hamlet, as well as more modern stories, like Star Wars.

Another notable publication isWide Ruled: A Friendly Interface
to Author-Goal Based Story Generation [26]. This tool provides an
interface for authors to set up a number of story factors. The tool
then builds and adjusts the story based off author input. We draw
inspiration from this mixed initiative tool because it demonstrates
how authors can systematically fill out details of a story or dialogue
that the author may had forgotten about or did not plan for. At
times, our tool does not provide all the necessary information that
an author requires for their story, so implementing some of the
features described in this paper may be useful for future versions
of our tool.

The last area of relevant research draws inspiration from crowd
sourcing knowledge for story generation. One pure mixed initiative
approach allows an author to collaborate on a story with a computer
by taking turns writing lines of text [1]. The system, developed by
Say, is able to generate lines of text by mining Internet blog posts
and selecting lines that appear relevant to the author’s input. Al-
though their system’s output lacked coherence, another technique
presented in [16] combines hand written stories in order to main-
tain the original creativity of the authors. The system outsources to
workers from Amazon Mechanical Turk to write short stories about
a given situation with simple language. After the system reads the
story, a plot graph is built. These plot graphs are then combined
in order to blend stories together. In a similar domain, our system
crowd sources its knowledge by outsourcing to DBPedia.

3 IMPLEMENTATION
The implementation of our tool is composed of three modules. The
first module is the Sparql back end, which serves as our connection
to the DBPedia knowledge base. The second module is the tok-
enizer, which parses a text file containing grammar rules written
by the author. The last module is the interpreter, which reads the
tokenized grammar rules, prompts the user to provide the names
of an arbitrary person and place, queries the Sparql backend to
get the context, prompts the user to provide desired levels of rules
expansions, and generates the story.

3.1 Sparql Back End
DBPedia altogether consists of 23 billion pieces of information
(RDF triples) out of which 1.7 billion pieces of information are
extracted from the English edition of Wikipedia. Our Sparql queries
specifically allow authors to extract information about people and
places that have corresponding Wikipedia web pages. Figure 1
shows an example Sparql query to extract an individual’s name and
a URI to the individual’s spouse.

Much like SQL, Sparql begins with a SELECT statement, fol-
lowed by a list of variables (each preceded by a question mark)
that are to be used as the column values in the resulting table.
There is no need for a FROM clause because our tool uses an end-
point located at http://dbpedia.org/sparql that is directly hooked



FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA LaBouve et al.

PREFIX res: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?name ?spouse WHERE {
OPTIONAL {
res:Barack_Obama foaf:name ?name.

}
OPTIONAL {
res:Barack_Obama dbo:spouse ?spouse.

}
}

Figure 1: A Sparql query that will fetch Barack
Obama’s name and a URI pointing to his spouse
from the DBPedia database. The endpoint is located at
http://dbpedia.org/sparql.

into the DBPedia database. Inside the WHERE clause, we spec-
ify the data that is to be extracted. The OPTIONAL keyword in-
forms the query that a particular piece of information may not
exist. Inside the OPTIONAL clause, there are three pieces of infor-
mation that each correspond to the format of a RDF triple: sub-
ject, predicate, and object. In order to specify the location of a
RDF triple inside a database, each piece of information must be
preceded by a URI. For example, The resource object for Barack
Obama is located at http://dbpedia.org/resource/Barack_Obama
and the location for the name and spouse predicates are located at
http://xmlns.com/foaf/0.1/name and http://dbpedia.org/ontology/
spouse respectively. The last element in the RDF triple is the infor-
mation that our query is to extract from the database. This infor-
mation is then stored in the variables called “name” and “spouse”,
which match the variable names listed after the SELECT statement.

Although it is very likely that every person has a name5, not
every person has a spouse. For this reason, there is a chance that the
table returned by the Sparql query will not contain some portion
of the expected information. When designing grammars for our
tool, authors must accommodate for missing pieces of information
and should not rely too heavily on the existence of any individual
data point. In order to maximize the probability of extrapolating
additional information for people and places, two broad queries
are written for demonstration purposes. The first retrieves person-
related information and the second retrieves location-related in-
formation. The types of information that our Sparql back end can
extrapolate from people and places are located in Tables 1 and 2.

3.2 Tokenizer
The second component of the tool is the tokenizer, which takes
a text file containing grammar rules as input. The tokenizer uses
regular expressions to pattern match the text file, which are then
used to build an internal representation of the rules. The input
grammar is structured similar to Backus-Naur style context free
grammar rules[4][19]. Rules are formatted as, Key ::= Value, where
keys on the left hand side are expanded into the values on the
5The “name" field is guaranteed to exist in our tool because a person’s name is needed
in order to execute the query.

Table 1: Potential person properties that can be pulled from
DBPedia.

Key Meaning

personName The person’s English name
birthPlace City where the person was born
birthDate The person’s numerical birth date
description A short description of the person’s career
school Where the person attended university
award Any awards the person has received
religion The person’s active religion
residence Where the person currently lives
spouse Who the person is married to
children A list of the person’s children’s names
parents A list of the person’s parent’s names

hypernym The person’s profession
sex Male, female, or other

networth The person’s net worth in scientific notation
fieldOfStudy The person’s field of study
knownFor A short description of the person
nationality The person’s nationality

Table 2: Potential city properties that can be pulled fromDB-
Pedia.

Key Meaning

cityName The city’s English name
country The country where the city is located
nickname Any nicknames that the city goes by
isPartOf Description of the city

leaderName Current political leader(s)
leaderTitle Title(s) of current political leader(s)

populationTotal Population count
east Cities or land masses located east
north Cities or land masses located north

northeast Cities or land masses located northeast
northwest Cities or land masses located northwest
south Cities or land masses located south

southeast Cities or land masses located southeast
southwest Cities or land masses located southwest

west Cities or land masses located west

right hand side. Values on the right hand side may be assembled in
two different ways. First, they may simply be combined together
to form one statement; this is the default case. Alternatively, they
can be separated into sections using a series of bar operators in
the following form: Key ::= Value1|Value2. The key has a random



Enhancing Story Generation with the Semantic Web FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

probability of expanding one of the sections on the right hand side
and ignoring the other sections. We extend these basic definitions
in order to give authors more control over rule expansions and
streamline tedious story details.

Much like context free grammars, our grammar has both non-
terminal and terminal nodes. However, our grammar makes an
additional distinction between nodes that are guaranteed to exist
and nodes that are not guaranteed to exist, which we coin as “op-
tional” nodes. A node is guaranteed to exist if it is explicitly written
by the author, while a node is optional if it’s value has a depen-
dency on a Sparql query. Nodes that are guaranteed to exist are
surrounded by angle brackets and optional nodes are surrounded by
square brackets. When defining the key for a non-optional node, the
following form is used: < Key >::= Value . When defining the key
for an optional node, the user must specify the node’s preconditions
in parentheses following the key’s name, thus the following form is
used: [Key](precondition) ::= Value . Preconditions allow our tool
to check whether or not values from a Sparql query exist prior to
expanding the key. If the precondition for a key is not satisfied,
then the key is ignored and is expanded to the empty string.

Figure 2 shows an example of a grammar with optional nodes
to generate a sentence. Starting at the first line, the <Root> key
will be expanded to two optional keys, [Name] and [Details], and
one non-optional key, <Action>. The [Name] key is surrounded by
square brackets because it has a dependency on personName from
Table 1. If the personName value exists, then the key is expanded.
Otherwise, the key is ignored. The [Details] optional key has a
dependency on two values from Table 1, sex and description. As
indicated by the \AND binary operator, if both of these values exist,
then the key is expanded. Otherwise, if one of these values does not
exist, the key is ignored. The <Action> key has no dependencies and
will always be expanded to some text as well as the <Dream> key.
The <Dream> key’s value uses the \OVER binary operator, which
is similar to the bar operator in that it splits the right hand side of
the rule into multiple sections. However unlike the bar operator,
the \OVER operator always expands the left key if the left key’s
precondition is satisfied. If the left key’s precondition is not satisfied,
then the \OVER operator will expand the right key. For example,
the <Dream> key will expand the [Options] key if either birthPlace
or school exists. If neither birthPlace nor school exists, then the
<Dream> key expands the <Default> key. The \OVER operator is
useful when the user would like to provide a default value in the
case where an optional key’s precondition is not satisfied.

Continuing with the example, the [Options] key has a depen-
dency on one of two variables from Table 1, birthPlace or school. As
indicated by the \OR binary operator, if both values are true, then
[Options] will randomly expand to either [BirthPlace] or [School].
If only one of the values exists, then [Options] will expand to the
key with the satisfied precondition. If neither of the values exist,
then [Options] will expand to the empty string. Sample execution
outputs of the grammar presented in Figure 2 can be found in
Section 3.3.

In addition to optional nodes, our grammar includes a function
called \CHOOSE. The \CHOOSE function gives the author some
control over the length of the generated text. This is done by prompt-
ing the author to input a number indicating how many keys listed
in the \CHOOSE function to expand. The first argument to the

<Root> ::= [Name][Details]<Action>
[Name](personName) ::= [personName]
[Details](sex \AND description) ::= ", the " [sex] " "

[description]","
<Action> ::= " suddenly woke from a nightmare about their

"<Dream> "."
<Dream> ::= [Options] \OVER <Default>
[Options](birthPlace \OR school) ::=

[BirthPlace] | [School]
[BirthPlace](birthplace) ::= "troubling childhood in "

[birthPlace]
[School](school) ::= "thesis defense at " [school]
<Default> ::= "secret affair"

Figure 2: A sample grammar that demonstrates the use of
optional nodes, the \OVER operator, and how Sparql values
can be used in grammar rules.

[Root](cityName) ::= "To explore the areas around "
[cityName] ", our character " <Travel> "went to bed."

<Travel> ::= \CHOOSE("Travel", <Default>, [North],
[South], [East], [West])

<Default> ::= "looked at a map, then "
[North](north) ::= <Moved>" north to " [north]", then "
[South](south) ::= <Moved>" south to " [south]", then "
[East](east) ::= <Moved>" east to " [east]", then "
[West](west) ::= <Moved>" west to " [west]", then "
<Moved> ::= "traveled" | "ran" | "walked" | "biked"

| "flew" | "took an Uber"

Figure 3: A sample grammar that demonstrates the use of
the \CHOOSE function. With the \CHOOSE function, an au-
thor can have some control over length of the generated text
at runtime.

\CHOOSE function is a string description of the subsequent keys.
The subsequent arguments are keys that can be expanded by the
author. During runtime, the \CHOOSE function prompts the author
to select a number ranging from zero to the number of provided
keys with satisfiable preconditions. Given the author’s input, the
function then randomly selects the specified number of keys to
expand. Figure 3 demonstrates the use of a simple \CHOOSE state-
ment for a grammar that outputs text about a character traveling to
different destinations. It is best practice to include at least one key
that does not require any preconditions as a default value. Sample
execution outputs of the grammar presented in Figure 3 can be
found in Section 3.4.

3.3 Interpreter
The author directly interacts with our software using our inter-
preter. It is invoked with a Python call and an argument containing
the location of the text file with the desired grammar. First, the inter-
preter will ask the author to enter a person, city, and state/province.
The state/province may be needed alongside the city in order to
provide a way to disambiguate places with similar names, like San
Jose, California and San José, Costa Rica. The details are then used



FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA LaBouve et al.

to build Sparql queries in order to retrieve relevant data from DB-
Pedia. If no information is found on either the person or the city,
the author will be prompted to input another person or city. This
can occur when the author has made a spelling mistake or when
the desired person or city does not have a Wikipedia page.

Once the interpreter has extracted all the relevant contextual
details, it will forward the story grammar to the tokenizer to be
broken into a list of statements that can be easily parsed. Once the
grammar has been digested into a list of statements, the interpreter
recursively expands each key until only strings and functions are
left. When resolving a key’s value, if the interpreter comes across
a bar operator, only a single value from the list is used to resolve
the key. We made a specific design decision to resolve each key
independently every time it is used, rather than storing and reusing
the result of the first expansion. Previous implementations where
the value of each key was stored in memory resulted in text that
always repeated in structure and content.

If the interpreter comes across a \CHOOSE function, it will first
resolve all the keys in the parameter list, keeping only the keys
with satisfied preconditions. Once the list of keys has been resolved,
the author is then presented with a numerical choice between zero
and the number of remaining keys. Given the author’s numerical
input x , the output text is formed by concatenating x random keys
together. A high level overview of how the interpreter works is
summarized in Figure 4.

3.4 Examples Executions
When the grammar from Figure 2 is sent to the interpreter, the
program prompts the user to input a person’s name in order to
build and execute a Sparql query and fill out the information found
in Table 1. If the author inputs the name “Napoleon”, the Sparql
backend returns the following set of keys with values: personName,
birthPlace, birthDate, description, spouse, and sex. After tokenizing
the grammar found in Figure 2, the interpreter may6 print the
following story:

“Napoleon, the male French monarch, military and
political leader, suddenly woke from a nightmare

about his troubling childhood in Corsica.”
The grammar from Figure 2 is also adaptable to other author inputs.
Say the author instead inputs the name “Barack Obama.” Then the
Sparql query connects with DBPedia and fills the following set of
keys with values: personName, birthDate, description, birthPlace,
school, award, religion, residence, spouse, children, parents, and
sex. The resulting text after expanding the grammar could7 be:

“Barack Obama, the male 44th President of the
United States, suddenly woke from a nightmare
about his thesis defense at Harvard Law School”.

In our second example, the interpreter asks the author to input
a name of a well known city. If the author inputs the city “San
Jose”, and then the state “California”, the interpreter will send this
information over to the Sparql backend. The result of the Sparql
query is that the following keys are filled with values: cityName,

6The output text is variable because Sparql may populate keys with multiple values.
When this happens, a random value for each key is selected.
7As with the previous example, this example’s output text is also variable because
Barack Obama has attended multiple schools.

Interpreter Grammar

Ask for famous person

Execute Sparql Query

Ask for well know city

Execute Sparql Query

Tokenize Grammar

Expand Key to Value

Does the value contain
unexpanded keys?

Print the story

No results from Sparql

Valid results from Sparql

No results from Sparql

Valid results from Sparql

Locate Root Key

Yes

No

Figure 4: A flowchart representation of how a grammar and
user inputs are combined by the interpreter in order to out-
put text.

country, isPartOf, leaderName, leaderTitle, populationTotal, east,
north, northwest, south, southwest, and west. When the grammar
from Figure 3 is processed by the tokenizer, the interpreter will
resolve the story. The \CHOOSE function will trigger the interpreter
to determine which optional nodes inside the \CHOOSE function
resolve to valid strings. Since the preconditions for all the optional
nodes are satisfied, there are five possible keys that the \CHOOSE
function can expand. The interpreter then prompts the author to
input a number between zero and five to randomly determine how
many keys to expand. If the author inputs two, then a possible
output after expanding the grammar is:

“To explore the area around San Jose, our character
biked north to Milpitas, California, then took an Uber
east to Mount Hamilton, California, then went to bed.”

Another possible output after expanding the grammar for an input
of two is:

“To explore the area around San Jose, our character
looked at a map, then flew south to Morgan Hill,

California, then went to bed.”

If our author needs something particularly short, or the character
is feeling particularly lazy, the author can input zero, which will
result in:



Enhancing Story Generation with the Semantic Web FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

Figure 5: Results of the user study from 15 participants. The
statements are located in Section 4

“To explore the area around San Jose, our character
went to bed.”

4 USER STUDY AND RESULTS
Quantifying the effectiveness of our tool is no trivial task. We
designed a user study to test our hypothesis, that Semantic Web
technologies can be used to generate more detailed text stories. Our
study took the form of a survey that instructed the participants
to use our tool and study our grammar rules. The survey begins
with an informed consent agreement as well as an agreement that
participants are at least 18 years old or older. Then, the following
section of the survey collects information on the participants’ levels
of experience with computer science related topics. Additionally,
all survey questions are designed to follow a standard five point
Likert scale.

After demographic information is collected, the participants are
instructed to experiment with three sample grammars. The first
grammar is large and is intended to demonstrate how user inputs
can influence character detail and story length. Participants are
instructed to enter several different names, places, and different
levels of desired detail for \CHOOSE functions. A sample run from
the user study is shown in Appendix A.1. Once the user has gener-
ated two or three stories and has a high level understanding of how
the tool works, the participants are directed to the Readme on our
Github repository8 to read about how our grammar is used to gener-
ate text. Having read the rules of the grammar, the participants are
then instructed to study the grammars presented in Figures 2 and 3.
Sample outputs from the user study are shown in Appendices A.2

8https://github.com/ericlabouve/ProceduralStoryGeneration

and A.3 respectively. The purpose of this exercise is to determine
how steep the learning curve is for understanding the syntax of our
grammar and the usefulness of our grammar. Once the participants
have completed the above tasks, the survey concludes by allowing
the participants to rate their experience on a set of statements and
short answer questions.

In total, 15 people completed the user study. From the demo-
graphic section of the survey, it can be concluded that the partici-
pants see themselves as moderately to very experienced computer
scientists who have prior experience in using context free gram-
mars. The participants are somewhat homogeneous because 11
out of 15 record that they are at least slightly experienced with
procedural content generation for making text stories. Additionally,
8 out of the 15 participants record that they are at least slightly
experienced with using SQL and most surprisingly, no participants
have any experience with Sparql or any other RDF query language.

Once the participants finish experimenting with our tool and
grammars, they were asked to rate their level of agreement with the
following statements on a five point Likert Scale (strongly disagree,
disagree, neither agree nor disagree, agree, and strongly agree):

(1) I felt in control of how much detail was included in the text.
(2) I felt that the person and location information enhanced the

text.
(3) The tool generated details that were surprising and interest-

ing that I did not expect.
(4) I felt that the generated details made sense in the context of

the text.
(5) I see a positive application for Semantic Web technologies

in future text generation research.
(6) I felt that the syntax of the grammar was easy to understand.
(7) I find that the grammar features extend the functionality of

context free grammar text generators in a useful way.

Figure 5 shows the results of the survey. There were many posi-
tive responses to our tool and grammar. First of all, most of the
participants agreed or strongly agreed that our tool generated de-
tails that were surprising and interesting that they did not expect.
According to the free response section of the survey, participants
especially enjoyed that our tool was able to extrapolate location
information from arbitrary cities and character details that they
did not know, such as aliases for a person’s formal name. One par-
ticipant expressed delight when the generated story referenced
Mang0, the gamertag of Joseph Marques, whom the participant
had entered, not expecting our grammar to know about or be able
to reference gamertags. Second, participants agree that Semantic
Web technologies can have a positive application for future text
generation research. The participants further clarify that not only
does the tool generate details that were surprising and interesting,
but the participants also found that the generated text was relatable
and funny because the tool utilized real world people and places in
fictional settings. Third, most of the participants agreed or strongly
agreed that our grammar’s syntax was easy to read and the added
features extended the functionality of context free grammar text
generators in useful ways.

The overarching negative response about our tool and grammar
was that the extrapolated details did not make complete sense
within the context of the generated text. Participants clarified in



FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA LaBouve et al.

the free response sections that some these errors can probably be
removed with a more refined grammar. However, other errors are
more difficult to handle. For example, the third sentence of the
generated story in Appendix A.1 is grammatically incorrect: "Now,
Barack Obama lives at White House." These types of grammatical
errors are common because Wikipedia has inconsistent naming
conventions. A possible method for fixing some of these issues
would be to refine the output text with an English grammar parser,
such as those provided by nltk9 or Stanford10.

Another issue that participants pointed out was that sometimes
the system would extract outdated information. For example, there
was one case where a participant input “Donald Trump” and the
tool mentioned one of his ex wives instead of his current wife, Mela-
nia Trump. This output occurred because our tool selects a random
value for each key that has multiple return values from a Sparql
query. Upon further investigation, it appears that Sparql queries
return values in chronological order. This structure can probably
be utilized for keys containing time-dependant data. Lastly, par-
ticipants also shared their thoughts on where our system can be
improved. Many agreed that the information mined about people
should be more relevant to the generated text so that story plots
can be more geared toward user input. This would be challeng-
ing to accomplish with our tool because we rely on a pre-written
grammar. Additionally, the availability of RDF triples mined from
DBPedia may be too sparse for such an application. However with
a more targeted RDF triple data sets, such as what might be main-
tained for the story coherence of a game, we can see foresee an
implementation where the mined information influences the plot.

5 CONCLUSION
We have presented a text generation tool that takes advantage of
the Semantic Web to extrapolate story details that are not explicitly
written by the author. A user study was conducted to verify our
hypothesis, which was whether or not the Semantic Web can be
used to generate more in-depth text stories. Our user study had 15
participants interact with our tool and record their responses on
Likert scales and free response sections. Overall, the participants
expressed that the tool generated details that were surprising and
interesting and that our grammar and functions were easy to un-
derstand and expanded the capabilities of context free grammars
in useful ways. One thing we learned was that we should have
made it clear to the test subjects that the generated stories are a
fictionalized account of real people, so that non-factual statements
would not be a surprise for them.

The results show evidence in our hypothesis, that Semantic Web
technologies can be used to generate more in-depth text stories and
participants see a positive application for Semantic Web technolo-
gies in story generation systems in the future.

6 FUTURE WORK
Sparql is a useful tool for extrapolating information for specific
pieces of data. However, it is hard to identify general objects that
may not have a dedicated Wikipedia page and DBPedia object. For
example, there is no Wikipedia page for a “Panda,” but there is

9http://www.nltk.org/
10https://nlp.stanford.edu/software/lex-parser.shtml

a page for a “Giant Panda.” The distinction between “Panda” and
“Giant Panda” is not something someone would think about ahead
of time when searching for pandas on the web. But these slight
differences will result in runtime errors when the Sparql query
searches for the appropriate DBPedia object. Future research would
determine a technique for guessing the appropriate DBPedia object
when provided a vague or misspelled user input. One avenue for
implementation would be to plug the word into Google Search and
then return the URL of the first Wikipedia page that Google Search
returns. This URL can then be parsed to determine the URI of the
appropriate DBPedia object.

Another area of future research would be query automation.
The Sparql queries used to collect person and location information
in this paper were hand crafted according to specific resources
available in the DBPedia ontology. This process was very tedious,
but we see room for automation. A tool that writes Sparql queries
can be used to broaden the scope of topics available for user input
would be useful for our application.

Our tool could also be expanded to usemultiple people and places,
or even recursive references. Clearly defining multiple people and
places may be challenging in the grammar, but it would allow for
stories with more than one main character and multiple locations
that are not immediately connected to each other. This is often the
case in stories and video games. Recursive references of characters
could allow for more in depth references to people, like a character’s
spouse, children, parents, neighbors, coworkers, or many other
relations, all without previous knowledge from the author.

REFERENCES
[1] [n. d.]. Say Anything: A Massively collaborative Open Domain Story Writing

Companion. Erfurt, Germany.
[2] Barros Gabriella A.B., Liapis Antonios, and Togelius Julian. 2016. Playing with

Data: Procedural Generation of Adventures from Open Data. In DiGRA/FDG
&#3916 - Proceedings of the First International Joint Conference of DiGRA and FDG.
Digital Games Research Association and Society for the Advancement of the
Science of Digital Games, Dundee, Scotland.

[3] Isabel Alexandre, Ana Paiva, and Paul Brna. 2003. Real characters in virtual
stories: Promoting interactive story-creation activities. (05 2003).

[4] John W Backus. 1959. The syntax and semantics of the proposed international
algebraic language of the Zurich ACM-GAMM conference. Proceedings of the
International Comference on Information Processing, 1959 (1959).

[5] Byung-Chull Bae and R. Michael Young. 2014. A Computational Model of Nar-
rative Generation for Surprise Arousal. IEEE Transactions on Computational
Intelligence and AI in Games 6, 2 (June 2014), 131–143. https://doi.org/10.1109/
TCIAIG.2013.2290330

[6] Eric Buckthal and Foaad Khosmood. 2014. (Re)telling Chess Stories as Game
Content. In Proceedings of the 9th International Conference on the Foundations of
Digital Games.

[7] Vinh Bui, Hussein Abbbass, and Axel Bender. 2010. Evolving stories: Gram-
mar evolution for automatic plot generation. In IEEE Congress on Evolutionary
Computation. 1–8. https://doi.org/10.1109/CEC.2010.5585934

[8] Ronan Champagnat, Guylain Delmas, and Michel Augeraud. 2010. A storytelling
model for educational games: Hero’s interactive journey. International Journal of
Technology Enhanced Learning 2 (01 2010). https://doi.org/10.1504/IJTEL.2010.
031257

[9] Fred Charles, Julie Porteous, Marc Cavazza, and Jonathan Teutenberg. 2011.
Timeline-based navigation for interactive narratives. 37. https://doi.org/10.1145/
2071423.2071469

[10] Yun-Gyung Cheong, Kinam Park, Woo-Hyun Park, and Byung-Chull Bae. 2017.
A Database-centric Architecture for Interactive Storytelling. In Proceedings of
the 12th International Conference on the Foundations of Digital Games (FDG ’17).
Article 49, 4 pages.

[11] Noam Chomsky. 1956. Three models for the description of language. IRE Trans-
actions on information theory 2, 3 (1956), 113–124.

[12] Richard E Fikes and Nils J Nilsson. 1994. STRIPS, a retrospective. Artificial
intelligence in perspective 227 (1994).



Enhancing Story Generation with the Semantic Web FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

[13] Jana Koehler, Bernhard Nebel, Jörg Hoffmann, and Yannis Dimopoulos. 1997.
Extending planning graphs to an ADL subset. In European Conference on Planning.
Springer, 273–285.

[14] Ben Kybartas and Rafael Bidarra. 2017. A Survey on Story Generation Techniques
for Authoring Computational Narratives. IEEE Transactions on Computational
Intelligence and AI in Games 9, 3 (Sept 2017), 239–253. https://doi.org/10.1109/
TCIAIG.2016.2546063

[15] Ben Kybartas and Clark Verbrugge. 2014. Analysis of ReGEN as a Graph-
Rewriting System for Quest Generation. IEEE Transactions on Computational
Intelligence and AI in Games 6, 2 (June 2014), 228–242. https://doi.org/10.1109/
TCIAIG.2013.2290088

[16] Boyang Li, Stephen Lee-Urban, and Mark Riedl. 2013. Crowdsourcing interactive
fiction games. In Proceedings of the 8th International Conference on the Foundations
of Digital Games, FDG 2013, Chania, Crete, Greece, May 14-17, 2013. 431–432.

[17] Yoichi Matsuyama, Akihiro Saito, Shinya Fujie, and Tetsunori Kobayashi. 2015.
Automatic Expressive Opinion Sentence Generation for Enjoyable Conversational
Systems. IEEE/ACM Transactions on Audio, Speech, and Language Processing 23, 2
(Feb 2015), 313–326. https://doi.org/10.1109/TASLP.2014.2363589

[18] Eric Miller. 1998. An Introduction to the Resource Description Framework.
Bulletin of the American Society for Information Science and Technology 25, 1 (11
1998), 15–19. https://doi.org/10.1002/bult.105

[19] Peter Naur, John W Backus, Friedrich L Bauer, Julien Green, C Kafz, John Mc-
Carthy, Alan J Perlis, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois, et al.
1997. Revised Report on the Algorithmic Language A lgol 60. In ALGOL-like
Languages. Springer, 19–49.

[20] Lyn Pemberton. 1989. A Modular Approach to Story Generation. In Proceedings
of the Fourth Conference on European Chapter of the Association for Computational
Linguistics (EACL ’89). 217–224.

[21] Vladimir Propp. 1968. Morphology of the Folktale. Univ. Texas Press.
[22] Aaron A. Reed, Jacob Garbe, Noah Wardrip-Fruin, and Michael Mateas. 2014.

Ice-Bound: Combining Richly-Realized Story with Expressive Gameplay. In Pro-
ceedings of the 9th International Conference on the Foundations of Digital Games.

[23] Owen Sacco, Antonios Liapis, and Georgios N. Yannakakis. 2016. A holistic
approach for semantic-based game generation. In 2016 IEEE Conference on Com-
putational Intelligence and Games (CIG). 1–8. https://doi.org/10.1109/CIG.2016.
7860386

[24] Stephen Scheinberg. 1960. Note on the Boolean properties of context free lan-
guages. Information and Control 3, 4 (1960), 372–375.

[25] Noor Shaker, Julian Togelius, and Mark J. Nelson. 2016. Procedural Content
Generation in Games: A Textbook and an Overview of Current Research. Springer.

[26] James Skorupski, Lakshmi Jayapalan, Sheena Marquez, and Michael Mateas. 2007.
Wide Ruled: A Friendly Interface to Author-Goal Based Story Generation. In Vir-
tual Storytelling. Using Virtual Reality Technologies for Storytelling, Marc Cavazza
and Stéphane Donikian (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
26–37.

[27] Rafael Pérez y Pérez and Mike Sharples. 2001. MEXICA: A computer model of a
cognitive account of creative writing. Journal of Experimental and Theoretical Ar-
tificial Intelligence 13 (04 2001), 119–139. https://doi.org/10.1080/09528130118867



FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA LaBouve et al.

A APPENDIX
The grammar that generates the story in Section A.1 can be found on our Github. The general plot of the story in Section A.1 is for a
character to seek out a lost diamond, but he/she is stopped multiple times by enemies. Please note that we use the gender neutral pronoun
“they" instead of “he" or “she" because our grammar does not disambiguate the person’s sex. Also note that some parts of the story are
grammatically incorrect because some values in DBPedia have inconsistent formatting.

A.1 Story Grammar
$ python3 proceduralStoryGeneration.py storyGrammar.txt
Please enter a famous person’s name: Obama
Retrieving information, one moment...
No info was found on Obama, please chose another
Please enter a famous person’s name: Barack Obama
Retrieving information, one moment...
Please enter a well known city: Manila
Is this city located in America?
If so, please enter the state/province. Otherwise, please press enter:
Retrieving information, one moment...
Finished getting context. Assembling story...
How much detail about Character Detail ? Please enter a number between 0 and 7
7
How much detail about Travel Extent? Please enter a number between 0 and 8
4
The generated story:
There once was a Person named Barack Obama. Barack Obama was born in Kapiolani Medical Center for Women and Children on 1961-08-04
to Ann Dunham. Now, Barack Obama lives at White House. They were raised to believe in Protestantism. Later in life, Barack Obama became
a 44th President of the United States. Throughout Barack Obama’s successful career, they received numerous awards such as Nobel Peace
Prize. When Barack Obama came of age, they studied at Occidental College. Barack Obama, tired of their regular life, traveled to Manila
in order to come across the breathtaking diamond. However, smelly robots invade Barack Obama! Then Barack Obama defeats them all.
Afterwards, Barack Obama crawls over to a local shop owner and asks, ‘Is the diamond in this city?’ They respond, ‘Legend says its gone!’
To continue the hunt, Barack Obama walks to a small city outside town. Then, warlike dogs mug the civilians! Then Barack Obama runs
them out of town. Afterwards, Barack Obama crawls over to a defeated enemy and asks, ‘Where can I find the diamond !’ They respond,
‘Oh! Umm... No I don’t recall ever seeing such a thing.’ To continue the quest, Barack Obama flies northwest to Navotas. All of a sudden,
quarrelsome samurai rush Barack Obama ... Then Barack Obama barely wins the fight. Afterwards, Barack Obama approaches a defeated
enemy and asks, ‘Is the diamond in this city?’ They respond, ‘I wouldn’t tell you even if I knew!’ To continue the quest, Barack Obama takes
an Uber south to Pasay. Suddenly, aggressive vampires intrude the civilians ... Then Barack Obama hides until everyone leaves. Afterwards,
Barack Obama crawls over to a a defeated enemy and asks, ‘Is the diamond in this city?’ They respond, ‘Oh! Umm... No I don’t recall ever
seeing such a thing.’ To continue the adventure, Barack Obama bikes southeast to Makati. However, giant dogs strike the buildings. Then
Barack Obama wins the battle. Afterwards, Barack Obama approaches a wounded civilian and asks, ‘Is the diamond in this city?’ They
respond, ‘How would I know? Try somewhere else?’ When finding the diamond seemed hopeless, Barack Obama sits on the ground and
Barack Obama finally sees the diamond in the distance.

A.2 Sample Grammar 1
$ python3 proceduralStoryGeneration.py sampleGrammar2.txt
Please enter a famous person’s name: Will Smith
Retrieving information, one moment...
Please enter a well known city: San Francisco
Is this city located in America?
If so, please enter the state/province. Otherwise, please press enter: California
Retrieving information, one moment...
Finished getting context. Assembling story...
The generated story:
Will Smith, the male American actor, film producer and rapper, suddenly woke from a nightmare about his troubling childhood in Philadelphia.



Enhancing Story Generation with the Semantic Web FDG ’19, August 26–30, 2019, San Luis Obispo, CA, USA

A.3 Sample Grammar 2
$ python3 proceduralStoryGeneration.py sampleGrammar1.txt
Please enter a famous person’s name: Will Smith
Retrieving information, one moment...
Please enter a well known city: San Francisco
Is this city located in America?
If so, please enter the state/province. Otherwise, please press enter: California
Retrieving information, one moment...
Finished getting context. Assembling story...
How much detail about Travel? Please enter a number between 0 and 5
2
The generated story:
To explore the areas around San Francisco, our character took an Uber east to Alameda County, then flew north to Sausalito, California, then
went to bed.


