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ABSTRACT
Procedural Music Generation in Games (PMGG) can enrich the
playing experience by providing both entertainment and commu-
nication to the player. We present a system that generates unique
procedural thematic music for non-player characters (NPC) based
on developer-defined attributes and game state. The system re-
sponds in real-time to the dynamic relationship between the player
and target “boss” NPC. We create a multiplayer 2D adventure game
using and evaluate the music generation system by means of user
study. Subjects confront four NPC bosses each with their own
uniquely generated dynamic track. Results indicate the generated
music is generally pleasing and harmonious, and players are able to
detect a relationship between themselves and the NPCs as reflected
by the music, even if they can not decipher the exact details.
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1 INTRODUCTION AND MOTIVATION
Music in video games is crucial to facilitating immersion in players[13]
[7]; it is as important for conveying in-game information as it is for
player enjoyment. Given the breadth of possible music theory-based
and algorithmic means to create procedurally generated video game
soundtracks, developing suitable and engaging music is a deeply
compelling task. PMGG is directly suited for scoring video games,
given their stochastic nature due to player action. Our motiva-
tion stems from classic games, and many arcade NPC, particularly
boss characters that signal an upcoming confrontation based on
visual and auditory clues. A majority of character introductions
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are signaled by just a simple change in musical track, sometimes
different tracks for unique boss characters. But with these musical
signals, there is ample opportunity to communicate much more to
the player, providing subtle utility and contributing to narrative
foreshadowing in the game. We develop a novel PMGG system,
integrated into a new multiplayer online adventure game, also de-
veloped for this project. Space limitations do not allow for full
design discussion of the PMGG and none for the game itself, but
we present an abridged version below and we direct the reader to
[REDACTED UNPUBLISHED SOURCE] for full details. The PCG
system uses the input NPC features to tune and control certain ap-
propriate grammar rules. We evaluate with a 23 person user study
verifying both quality, and representation in our system.

2 RELATEDWORK
The first instance of procedural music in a game consistently traces
back to Peter Langston’s work for Lucasfilm Games BallBlazer
games, first released for the Atari 8-bit family in 1984 [11], for
which the iMUSE (Interactive Music Streaming Engine) system was
developed [19]. This system was used in later games, including
both generative and transformative musical soundtracks [10][5].

Procedural music in games widely stayed in the adaptive and
transformative realms as algorithmic music composition was being
explored by musicians and composers. By the early 2000s, improve-
ments in vertical and horizontal stemmixing allowed for developers
and composers to experiment again with generative methods. No-
table feats of procedural music generation for video games that
adapt to player actions and in-game events can be found in games:
Spore, No Man’s Sky, and Rez Infinite.

A pioneering scholar in algorithmic music composition is David
Cope who successfully demonstrated a rule based musical compo-
sition system mimicking the style of classical greats [3][4].

Grammars are one of the earliest representations of music for
use in computational generation: by applying semantic analysis
concepts, grammars are capable of describing music theory in a
structure directly suitable for procedural generation [12], paving the
way for systems that codified specific music theory paradigms with
enough depth to generate structurally correct music [21][4][20].
Though less adaptive and non-interactive, machine learning sys-
tems present the most recent paradigms, showing high-performing,
promising music generation results [8].

Birchfield et al. in 2003 introduced a generative model for the
creation of musical emotion, meaning, and form using genetic al-
gorithms (GA). The team noted “moments in the generated music
where the drive seems to stall," an issue still found often in many
generative systems [2].

Multi-modal systems pose perhaps the highest potential for suit-
able, generative, adaptive music in video games. Prior systems such
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as Jewell et al.’s work in 2005 and Scirea el al.’s work on Meta-
Compose in 2016 gear themselves towards adaptability in video
games [9] [18]; their work supports multi-agent systems as the
ideal paradigm for improving the current state of PMGG.

MetaCompose presents a promising system design to integrate
to game development systems for adaptive, fully generative music
in games [18]. It is a significant step in the direction of achieving
immersive, affective music while maintaining compositional quality.
Emphasis is placed on the distribution of musical tasks to three
different subsystems (akin to this system: chord sequence, melody,
and accompaniment) in their design to generate the composition,
and on the musical constructs based in music theory best create
the intended emotional state.

The theory on affective state present in MetaCompose and pre-
vious work by Marco Scirea references Jacek Grekow’s work on
defining emotion in music by mapping their descriptors to a space
composed of the axes valence and arousal, the former corresponding
to a scale of positivity and negativity, the latter to high to low en-
ergy [17][6]. Earlier works also used this scale to structure metrics
with which to generate music [1][16].

3 SYSTEM DEVELOPMENT
We present a multi-agent expert system, which generates compo-
nents of music by multiple means. Each algorithm is developed
to handle a specific musical composition aspect, all of which are
synthesized to a single MIDI file that contains all the movements,
sections, rhythms, notes, and instrumentation necessary to play-
back a full composition in-browser, in real-time for the game.

This system draws inspiration from the interactive music gener-
ation concepts proposed in Scirea et al.’s work on MetaCompose
[18], but includes various improvements and alterations that allow
the music generation system to adapt to NPCs in a more responsive
and expressive manner.

3.1 Composition Algorithm
As input, the system receives four values that are resolved from
developer input: arousal, valence, time period, and seed (randomly
generated by default). These values together resolve to various
aspects of the final composition.

3.1.1 Harmonic Structure. First, the resolved valence value is ma-
nipulated to decide the level of lightness or darkness, which then
resolves to the final mode the composition will be written in. Sec-
ondary and third modes are also selected to allow for modal in-
terchange that allows the composition generation space to sound
more gradated between the modes.

3.1.2 Chord Sequence Generation. With the resolved mode, we
can apply diatonic music theory rules to a parameterized, random
generation of chord progressions. Given the rule structure of chord
progression theory, designing an algorithmic grammar was most
appropriate for this section.

Each scale degree’s chord in a given mode has an assignable
quality. The classification mostly relies on whether or not the chord
contains fundamental or characteristic tones: the former tends to
sound mode-agnostic, while the latter tends to establish to the ear
that we are definitely in the given mode.

For the purposes of this user study, A B A B was the only song
form used. With these classifications, we can construct an overar-
ching chordal structure based on the tendencies of the notes within
the given mode’s chords. Within chord progressions, passages can
be further classified by closed = c and open = o. This is where gram-
mars lend well; each of these consist of a specific ordered collection
of the above abstract chord quality classifications. Using string
replaceall, we can string together a variety of these progressions
that are both varied and harmonically correct. Each A B section
consisted of an origin, which was either: c c, c o, c o c, or c o o c.

Closed passages generally start and end on a tonic chord. This is
due to the general feeling of “resolution" that this affords listeners.
Alternatively, open passages generally start and end on a dominant
chord; this chord passage leads listeners on a departure from the
“home base" of the music, and leaves them wanting to resolve to
tonic.

With this, an example of a fully resolved A section could look
like this:

A ⇒ c o c ⇒ [T S D T2] [D T S D] [T D2 D S T2] ..

3.1.3 Melodic Algorithm. The melody generation algorithm had
the most complex rules applied in terms of rhythm and pitch de-
cisions. After an appropriate rhythm was generated for a given
musical measure, the pitches were assigned to the rhythmic subdi-
vision of the measure according to standard melodic line rules as
represented by a combination of distributions.

3.1.4 Pitch Contour Generation. The randomly generated input
binary string serves as the generative seed for the base pitch number
string. This base pitch number string is then adjusted by passing
through the following rules, each weighted against one another as
distributions. The included subset of composition rules for melodic
line are as follows: (1) Remove third+ repeating note; (2) Force a
2nd interval jump if a farJump has occurred; (3) Added dissonance
(diss.) for interest; (4) Biased range: keep notes within a certain
range; (5) Close Jumps interspersed among Far Jumps.

Each rule was given a distribution and later normalized and
combined, weighted as follows:

• closeJump = 2 * (1 - arousal) + 1
• farJump = 2 * arousal
• dissonance = 3 * valence
• biasRange = 2 * arousal + 1

3.1.5 Rhythmic Criteria. Time Signature Common time, 44 was
the default time signature for all valence values above 0.5. For a
lighter, bouncier feel, waltz time, 34, was used instead. Some re-
sponses in the results section even correctly noted a “bouncier" feel
when this time signature was used.

3.1.6 Mapping of Attribute to Musical Feature. Figure 2 represents
the most appropriate set of static and dynamic NPC attributes for
the game used in this user study, and illustrates the flow of how
and where these attributes affect the generated music.

4 USER STUDY AND RESULTS
We conduct a 23 person user study based on an adaptation of the
game PhaserQuest (which was adapted from the browser-MMO
BrowserQuest) injected with this PMGG system. 15 participants are
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Figure 1: Simple music composition feature dependencies

Figure 2: Illustrates dynamic relationships of game features to musical features within the generation system

Table 1: Music quality questions (n=23)

Was the music... Definition Summary Average
Pleasing? Easy to listen to, not necessarily good 7.81 / 10
Random? How unstructured or dissonant music was 4.57 / 10
Harmonious? Objective musical "correctness" 7.38 / 10
Interesting? Subjective preference for generated music 7.76 / 10
Dynamic? On return to NPC, noticeable variance 8.29 / 10

Table 2: User study free form responses: percent identifying a representation and top answers (n=23)

aspect % id’ed top answers true representation
tempo 91.3 “environment”, “risk”, “game play” boss speed
melody 83.0 “environment”, “risk”, “NPC” boss difficulty
harmony/accom. 69.6 “environment”, “not sure” boss strength / hp
musical mode 47.8 “progression” power diff.
instrumentation 78.3 “environment”, “not sure” number of encounters

male, and 7 are female. All are students recruited from a university
computing program. Two objectives of the user study are: first
determine if the generated music is good, and second to measure

to what extend can users decipher the communication that occurs
through the procedural music.

For the first objective, we use the criteria from Scirea et al.’s eval-
uation work for their own generative music system, MetaCompose



FDG ’20, September 15–18, 2020, Bugibba, Malta Washburn and Khosmood

[15]. The average scores were higher than expected for musical
quality as seen in Table 1. The overall score for musical quality
incorporating all attributes is 7.16 / 10 with a standard deviation =
√
σ 2 of 4.40. Most responses are very positive.
Users also feel certain attributes in-game are reflected in the

generated compositions. This assessments is done through a set
of free form responses to the questions of the form “did [aspect]
represent anything?”, where [aspect] is the specific musical variable
in our PMGG algorithm. We also ask what the representation itself
is. The results in Table 2 indicate users clearly identifying some
correlation but did not have enough exposure or recollection to
isolate the actual representation.

Power differential was the primary factor that affected the va-
lence parameter of a new instantiation of a generated music compo-
sition. Recall that the valencemeasure of a piece of music generally
accounts for the perceived happiness or sadness of that piece. Con-
versely, the energy level accounts for the perceived arousal or
sleepiness of a piece of music. Together, this dyad creates a two-
dimensional emotional space that can account for a broad range of
emotions [14], all of which can be broadly associated with musical
mode, and dialed in with musical details such as tempo, rhythmic
choices, instrumentation choices, dynamics, and more (such as was
done in this experiment). A majority of my participants were able
to identify this attribute as one of the main factors that affected the
music generation.

The question that addressed the core of relating a composition to
a given NPC’s attribute set asked participants if the music helped to
indicate Boss HP, Boss Stamina, Boss Weapon Rating / Attack, Boss
Armor Rating / Defense, Power Differential, or Interaction Number.
The characteristics aside from power differential I listed in this
multiple choice question were also in-game attributes that affected
the generated composition, but to lesser degrees than the power
differential did. For example, a higher Boss HP raised the value of
valence, but to a lesser degree than the Power Differential. Boss
Stamina, or boss speed in this case, was the principal attribute that
affected the energy value in the generative algorithm; higher speed
= higher energy. Boss Weapon Rating / Attack and Boss Armor Rating
/ Defense also minimally weighed in on the valence value due to the
fact both attributes were being compared to the player’s own attack
rating (as that is how power differential is calculated), but were
primarily responsible for instrumentation choice. Changes in the
music due to Interaction Number may have been more difficult to
pick up on, due to the fact that this would only be predominant if
the player had visited the boss with low attack or low defense (bad
weapons and bad armor) first, then returned to visit the boss with
better gear (higher attack or higher defense). Recall from figure 2,
this attribute accounted for instrumentation choices and number of
musical layers present. This concludes that the system did in fact
generate relevant compositions given specific NPC attributes to a
certain extent.
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