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Abstract - Currently, stylistic analysis of natural 

language texts is achieved through a wide variety of 

techniques containing many different algorithms, feature 

sets and collection methods. Most machine-learning 

methods rely on feature extraction to model the text and 

perform classification. But what are the best features for 

making style based distinctions? While many researchers 

have developed particular collections of style features – 

called style markers – no definitive list exists. In this 

paper we present an organized collection of such style 

markers with performance data on a diverse set of texts. 

We show that for each training document, one or more 

markers exist that can distinguish it from others, 

providing a basis for a weighted, combined set of 

markers that outperform any of the individual ones. We 

examine and categorize 502 style markers, both 

individually and as a set, and evaluate their performance 

on several English language text collections. 

Keywords: Computational Stylistics, Style Processing, 

Natural Language Processing, Machine Learning, 

Computational Linguistics, Artificial Intelligence 

 

1 Introduction 

  Researchers have been performing stylistic analysis on 

text corpora for millennia [1] beginning (in the Western 

tradition) with authorship attribution efforts in ancient 

Greece [2]. Nontraditional authorship attribution with 

internal evidence (only the text itself) is one of the most 

common applications for stylistics.  

Computational methods have been in use in the past 

decades and have been instrumental in solving several 

high profile authorship disputes [3]. While these cases 

and other success stories have shown the power of 

computational stylistics, the methods used, particularly 

the style marker selection, have almost always tended to 

be in support of a traditional theory held by researchers 

who utilized them [4]. Lack of uniformity in processes, 

lack of standardization in methods as well as selections 

of convenience have been among the problems cited in 

the field [5][6]. 

We aim to automate a process of statistically deriving 

the best combination and parameterization of style 

markers for a given problem. The first step in that 

process is production of a superset of style markers with 

detailed definitions to serve as an extensible marker 

library. We organize these markers into a style marker 

taxonomy. The superset of markers can be applied to 

particular problems and relevant markers would be 

distinguished based on performance.  

To find an initial set of markers, we examined many 

collections in the literature and adopted style markers 

that were used by the respective authors that could be 

formalized. 

We demonstrate the utility of the taxonomy by 

applying its markers to our reference corpus and 

evaluating the markers on attribution performance. We 

are able to report the top performing markers across eight 

different English language authorship attribution 

problems.  

In the following sections, we first describe the 

reference corpus and reasons for choosing it (section 2). 

In section 3, we state our assumptions with this specific 

study. In section 4, we describe the taxonomy hierarchy 

in depth and list current taxonomy marker entries. In 

Section 5, we run a number of experiments designed to 

find one or more document discriminators and evaluate 

the markers in both individual and combined fashion. 

The results are discussed in section 6.  Conclusions are 

made in section 7. 

2 Reference corpus 

 The Adhoc Authorship Attribution Contest (AAAC) 

was held in 2004 with many researchers participating 

[7][8]. The AAAC corpus is particularly well suited for 

our marker evaluation task for several reasons. The most 

important reason is that the corpus has purposefully 

provided significant level of diversity in its many 

problems.  

Documents of different problems differ with each other 

in genres and text types, as well as document sizes and 

training/test size ratios, but remain highly uniform 

within each problem. The corpus is created and prepared 

by contest organizers and is available to anyone in its 

original form, allowing for ease of repeatability. The 



formatting is machine friendly and in fact, has already 

been used as an example corpus bundled with the 

software package JGAAP [9]. The texts are used exactly 

as distributed in plain text files without the need for any 

further preparation.  

The AAAC corpus is divided into multiple problems. 

Each problem consists of a set of unlabeled test 

documents and a set of labeled documents, associated 

with an author. Usually multiple labeled documents exist 

per author that can serve collectively as a training corpus, 

allowing for cross-validation. However, problem H only 

has one training and one test document for each author.  

The types of writing in the problems themselves are 

diverse. They include student short essays in American 

English (problems A and B), novels (problem C and G), 

plays (problems D and E), letters (problem F) and speech 

transcripts (problem H). Problems I through M are in 

French, Serbian-Slavonic, Latin and Dutch respectively 

and are not used in our study mainly because many of the 

markers used are English specific. 

Participants in the AAAC utilized many algorithms 

each depending on a relatively small set of features 

extracted from the contest texts [7][8][9]. Each 

algorithm/feature set/parameter set can be thought of as a 

“recipe” for authorship attribution. The composition of 

the recipes, as well as the procedure to apply them 

however was entirely the work of individual participants 

based on their own hypotheses. 

For our experiment to evaluate markers, we used eight 

English language problems from the AAAC corpus: 

problems A, B, C, D, E, F, G and H [7].  

3 Assumptions 

The fundamental assumption in any feature extraction 

is that the extracted data is an approximate and 

representative model of the underlying text, in other 

words, “style” can be modeled by various markers and 

associated statistics [8][10].  

In order to accomplish the necessary document 

comparisons, we must ensure that markers remain as 

universal as possible. Thus, we avoid introducing 

markers that may not be applicable to some texts, derived 

from situation-specific corpus comparisons (for example, 

common word frequencies) or may be direct reflections of 

the size of a corpus [11]. 

In general, we can enumerate the following 

assumptions about the corpora we are considering for 

stylistics work: 

 

1. A corpus is a collection of documents or just one 

document. 

2. Each document is divided into one or more 

paragraphs. 

3. Each paragraph is divided into sentences (not 

necessarily a well-formed linguistic definition of 

sentence). 

4. Each sentence consists of words. 

5. Each word consists of characters. 

 

Our standard unit of comparison is the corpus. Since a 

corpus can be a single document for our purposes, we can 

compare one chapter, one page or even one paragraph 

(corpus of a single document, single paragraph) against 

books and collected works, provided our markers are 

size-independent. 

Precise tokenization routines are necessary in order to 

further specify a uniform way of extracting each of the 

above units [6]. We hope to standardize these extraction 

methods as well as the markers themselves. Some of 

them (for example word tokenizers) can be considered 

parameters for marker extraction routines as we will 

describe below. Otherwise, extraction routines will have 

to be available for examination to make repeatability 

possible. 

4 Taxonomy of style markers 

We have developed a taxonomic hierarchy based on 

previous observations of markers [4][5][8][9][11] 

[12][13][14]. This hierarchy consists of the following 

hierarchical elements: Categories, Families, Markers, 

Parameters and Statistics. An example illustration for 

category “Lenghts” is given in Fig. 1 below. 
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Fig. 1. Partial taxonomic hierarchy for category 

"Lengths" 

4.1 Categories 

These are high level themes for the marker collections 

and subsume many of the marker concepts we 

encountered in the literature. Examples: lengths, words, 

n-grams, readability and complexity. 



4.2 Families 

Families are middle level divisions describing the type 

of marker in the collection. Examples: characters, words. 

4.3 Markers 

Markers are base level stylistic events whose presence 

we are measuring. Example: characters per word, 

paragraphs per document. 

4.4 Parameters 

Parameters could be thought of as further sub-division 

of markers, i.e. variation of markers that may be used 

simultaneously. In most techniques the parameters 

correspond to canonizers or pre-processing phase 

routines which operate on the entire corpus, resulting in 

the same “parameters” for every marker, as the corpus is 

modified prior to extraction of any features. This is the 

way JGAAP[9] handles them and it functions efficiently 

since only one event set (feature) is being considered at a 

time.  

To accommodate ensemble methods, we must allow for 

the possibility of using multiple markers with different 

pre-processing parameters each. Hence, we support 

separate individual parameterization of each marker. 

Examples of parameters are: unify capitalization, unify 

numerics (replace with token), exclude common words. 

4.5 Statistics 

Statistics are metrics used for summarizing marker 

statistics for the purposes of classification and machine 

learning. While categories, families, markers and 

parameters mainly describe a feature event, statistics 

specify how to extract numerical data from the said 

events. Statistics control the footprint of each marker 

(called marker-instance) in the final feature matrix. For 

example a statistics function for the marker “characters 

per word” (list of all word lengths in a corpus) could 

return any of the following: 

 A large array of word lengths over the entire 

corpus (perhaps hundreds of marker instances)  

 A single value, the average of all word lengths (1 

marker instance) 

 A 5-tuple of floats denoting minimum, maximum, 

mean, median and variance for the array (5 

marker instances) 

4.6 Types of categories 

 Categories are the highest level distinctions of the 

taxonomy. Table I outlines the implemented categories 

and the families associated with each. Neither the 

categories nor any of their sub-structure is meant to be a 

permanent statement on marker style markers or their 

organization.  

 

Table I. Marker categories 

Category Description Families 

Lengths Counts and sizes 

of text features 

such as sentences 

and paragraphs. 

Characters, words, 

sentences, paragraphs, 

syllables, numerics, 

vowels, punctuation, 

symbols. 

Words Counts of many 

categories of 

words, word 

frequencies and 

word lists. 

Most frequent words, least 

frequent words, parts of 

speech, misspellings, 

word lists (dictionaries). 

N-grams Counts sequence-

based counts of 

characters, words 

and parts-of-

speech. 

Characters, words, parts 

of speech 

Read-

ability 

Measures presence 

of well-known 

readability, 

sentence 

complexity and 

phrases recognized 

as cliché or poor 

communication. 

Readability (Coleman-

Liau, Kinkaid, Flesch 

Reading, Fog index, ARI, 

Lix) and Complexity 

(syntactic depth, parser 

phrase counts), GNU 

Diction rules (cliché, 

rewrite, run-on sentence, 

superfluous language). 

Semantics Measures having 

to do with 

meaning and word 

senses. 

Word Net synset size, 

synset depth and  distance. 

4.7 Marker extraction 

 Due to space restrictions, we are not able to list and 

discuss every marker, parameter and statistic. We 

provide a full listing of every marker mentioned in this 

paper in Table IV. In this section, we choose one 

category, lengths, to demonstrate marker diversity, 

extraction and values.  

The category name “lengths” is meant as in the length 

of an array. Markers in this category are about counting 

the occurrences of some distinct feature in terms of 

another [13], like “words in a sentence” or “vowels in a 

paragraph.” Each of the length markers is an array of 

integers denoting counts of the phenomenon for which 

they are named.  

For example, let us assume we have a corpus with 2 

documents. The first document has 5 paragraphs and the 

second has 3 paragraphs. The number of paragraphs is 

determined in accordance with parameter specifications 

of the marker (4th level of taxonomy hierarchy) which are 

inputs into the paragraph tokenization routine.  For 

instance, we may want to count a title as a paragraph, or 

we may not. 



The marker output “paragraphs per document” (ppd) is 

given by an array of two integers representing document 

length in terms of paragraphs: 

 

ppd (corpus, parameters) = (5,3) 

 

Let us now further assume that the first document’s 5 

paragraphs consist of 2,5,9,2 and 3 sentences 

respectively, and the second document’s 3 paragraphs 

consists of 12,3, and 4 sentences respectively, consistent 

with sentence level parameters. Thus a “sentences per 

paragraph” (spp) marker is given by an array of 8 

integers representing paragraph lengths in terms of 

sentences: 

 

spp(corpus, parameters) = (2,5,9,2,3,12,3,4) 

 

To compare the markers of two different corpora, 

which likely have different length arrays, we use 

statistics, the lowest level of the hierarchy. For example, 

a statistics routine that returns maximum and mean of an 

array can be used to convert the above spp marker array 

into a tuple of floats.  

 

stats(spp(corpus, parameters)) = (12.0,4.0) 

 

These two values are the final contributions of the spp 

marker to the overall feature matrix of the corpus. 

4.8 Other categories 

 The words category, unlike lengths, is not concerned 

with the size or number of all words, but rather the 

frequency of particular selection words within a corpus or 

document.  

 Markers in the “most frequent” family of category 

words are arrays of X decreasing floating point values. 

One strategy is for X to be chosen as a large number 

resulting in a large array of floats per marker, and then to 

summarize that array using statistics resulting in only a 

few floats per marker. Another strategy is to choose a 

small number for X, such as 5 or 10 and do not use 

statistical summaries. 

The values in the “least frequent” family are hapax 

legomena, dis legomena, etc. They are straight integer 

counts rather than frequencies or ratios. 5-legomena, for 

example is the number of words in the corpus that occur 

exactly 5 times each. Part of speech ratios are single 

floating point values each, thus there is no need for 

statistics in this family.  

The dictionary family consists of frequencies of words 

in a given list L. The size of list L is unspecified and 

therefore could contain thousands of entries. Statistics 

may or may not be used on these.  “Top100F” family on 

the other hand is actual frequencies of words, and thus is 

made up of 100 floating point values. 

A popular technique used for stylistics is n-gram 

analysis [15]. N-grams consist of N successive 

occurrences of a token type (could be a character, word, 

part-of-speech or even sentence types). These markers 

have been successfully used in many authorship 

attribution problems.  

The most important difference between n-grams and 

other markers is that n-grams are dependent on a meta 

parameter, N which must be specified to instantiate n-

gram routines. Character trigram statistics, for example, 

could be completely different than bigram ones. To make 

the taxonomy simpler, we represent n-grams with their 

generic “n” parameter.  

Another important set of indicators are readability 

indices [16]. Several well-known formulas exist and are 

reportedly in use to assist essay graders for standardized 

tests. The particular indices chosen (ARI, Coleman-Liau, 

Flesch-Kinkaid, Flesch reading ease, Gunning-Fog and 

SMOG indices) were the ones described in the GNU 

Style manual, and we refer the reader there for full 

explanation of each formula [16]. All outputs are single 

integer or single floating point values.  

The complexity family markers have array-length 

outputs similar to those markers in category “Lengths”, 

and thus could be summarized with statistics. “Syntactic 

depth” is the deepest level of a parse tree achieved by 

parsing the single sentence in question. Phrase count is a 

simple count of independent phrases as tagged by the 

parser, regardless of level or nested status.  

The markers in the semantics category are mainly 

derived from Word Net synsets [17] and associated 

numerical properties with the ontology. 

5 Evaluation of markers 

 One of the principle uses for having a comprehensive 

taxonomy is that it allows us to experimentally evaluate 

the markers against particular corpora. 

We extract 502 marker instances (marker-parameter-

statistics) from all training document collections. This 

results in a single set of markers for all same-labeled 

documents within a problem, as well as individual sets 

for each document. These 502 cover most of the 

taxonomic markers we presented above with the notable 

exception of sentence-level complexity statistics (phrase 

count and syntactic depth).  

We used all of the “N-gram” markers with N <=5 and 

number of top n-grams = 300 for characters, words and 

parts of speech, meaning the statistics are derived only 

from the top 300 n-gram events. There was no 

unification of white space, elimination of numbers and 

symbols or capitalization for n-gram based markers.  

For all word counts, we used alphabetic words only, 

although for sentence and paragraph lengths, we used all 



space separated tokens. For dictionary based operations 

(stop words, top 1000 English words and top 100 non-

stop words) we used a uniform capitalization.  

For all array based markers, we used standard statistics 

which reduced all arrays to a 5-tuple of minimum, 

maximum, mean, median and variance. For single value 

markers (such as xLegomena, readability indices) as well 

as for top 100 non stop word frequencies, we did not use 

any derivative statistics, only the raw frequencies. 

We used Python with NLTK tools [18] to extract most 

of the markers. Part of speech tagging was done by the 

Stanford Tagger [19], and the LinkGrammar parser [20] 

was used for some phrase level semantic statistics. 

Specifically, we ran two experiments: For the first 

experiment, we considered each of the 502 marker 

instances un-weighted, in isolation. We used nearest 

neighbor with a simple Euclidean distance formula and 

performed attribution on the problem set based on 

finding the labeled corpus with the minimum distance.  

For the second experiment, we combined all 502 

markers using a weight vector. We trained the vector 

with a fixed number of maximum cycles (200800) for 

each problem. The resulting weight vectors were used to 

classify the documents. 

6 Experimental results 

The eight AAAC problems (A-H) have 187 labeled 

documents total representing the work of over 50 authors. 

We classify each document with the given choices in the 

corresponding problem and thus we derive an “absolute” 

performance value for each marker.  

A problem that has a large number of documents could 

really dominate the evaluation of the markers if marker 

performance is measured by absolute number of correct 

document attributions. Thus, we also calculate the results 

in terms of problem-relative and marker-relative correct 

attributions.  

The problem-relative results (called adjusted relative 

performance) are displayed in Fig. 2, along with the 

absolute performance for each marker. The Problem-

relative performance numbers are calculated by 

considering the percentage of correct attributions per 

problem, regardless of the how many documents it has.  

For example if a problem had only 2 training 

documents, and only one of them was correctly attributed 

by marker X, then it would have 50% problem-relative 

correct attribution for X. If the problem had 10 training 

documents and still only one was correctly attributed, 

then X would have 10% attribution score. If one marker 

was able to correctly attribute every document in the 

problem it would achieve 100% problem-relative score. 

Thus, the relative value eliminates the size of the 

problem as a factor.  

Every attribution problem does not have the same 

degree of difficulty. We are also interested in marker 

performance relative to other markers per problem. To 

accomplish this, we rank all the markers from the best 

performing to the worst for each problem attribution, and 

calculate difference from the mean in units of standard 

deviations (z-scores) for each marker, for each problem. 

This allows us to normalize for the problem difficulty 

when comparing markers to each other. Table II ranks 

the top 15 markers and their average z-score performance 

across all eight problems. For reference, the marker’s 

relative and absolute performances are also listed. 

Table II. Marker performance relative to other markers 

Marker # average z-score rel. perf. abs. perf. 

292 1.65467884 66.29% 55.08% 

232 1.47054735 63.72% 52.41% 

247 1.34549143 63.88% 49.20% 

152 1.29048525 61.84% 50.27% 

310 1.24059087 62.47% 49.20% 

229 1.22346475 60.98% 47.59% 

40 1.21858176 62.66% 44.39% 

230 1.21157427 62.12% 48.13% 

290 1.21157427 62.12% 48.13% 

217 1.21012445 61.59% 48.66% 

169 1.18920219 63.19% 44.92% 

14 1.17039029 59.15% 44.92% 

172 1.15087611 62.98% 44.39% 

92 1.13307073 60.92% 48.13% 

8 1.12271391 59.68% 45.45% 

44 1.11259672 60.44% 45.99% 

257 1.11227455 60.73% 47.06% 

289 1.11002161 59.69% 48.66% 

245 1.10662925 61.31% 44.39% 

234 1.08100501 59.34% 47.59% 

 

For the second experiment, we train the weight vector 

using a modified greedy first-choice Hill Climb 

algorithm. We also use the k Nearest Neighbor to 

perform the actual attribution. The results are 

summarized in Table III. Table III column 1 (left most) 

designates the problem from the AAAC corpus [4]. Each 

problem has a number of training documents and a 

number of possible authors (classes).  

 



 

Figure 2. Top performing marker instances by adjusted relative performance.

 

Columns 2 and 3 of Table IV indicate the best 

performing individual markers on the particular AAAC 

problem. For example, the highest number of correct 

associations that could be performed with a single marker 

on problem A is 21 documents out of 39 possible or 

53.84%. Marker 57 can perform 21 correct attributions 

and is thus the best independent marker (column 3 from 

left).  

Columns 4 and 5 do the same for the combined 

approach. Column 4 lists the best attribution results and 

column 5 lists the top weighted markers in order. We 

have listed all markers whose weights have grown as a 

result of training (starting from uniform weight). 

Therefore, all additional attributions beyond what the top 

individual marker can do, is due to combining the 

particular markers in column 5. For problems D, E, G 

and H, the weighted approach does not add to 

performance because there exists at least one marker for 

each of these problems that can by itself categorize 100% 

of the documents correctly.  

For problem H where only three documents needed to 

be classified, 351 different markers can achieve 100% 

classification. Another 58 markers can correctly attribute 

2 out of the three documents. 

Please see the glossary in Table IV for description of 

the marker instances mentioned in this paper. A full 

description of all markers used in this study can be found 

in [21].  

 

7 Conclusions and future work 

We have developed an extensible taxonomy of 502 

style marker instances in a hierarchical classification. 

Although many more markers could be added to this 

collection, either through additional novel markers and 

extraction routines or production of more variations of 

the existing markers.  

We have conducted experiments to determine the 

effectiveness of these marker instances.  

As can be seen in Fig. 2, and Table II, marker #292 

(median of Word Net synset counts per document) is the 

best performing marker according to all three individual 

marker performance measurements (absolute, problem-

relative and marker-relative).  

Table III. Individual versus combined (weighted) marker 

performance results 

AAAC 

Problem 

(docs / 

authors) 

Best 

ind. 

marker 

results 

(%) 

Best 

ind. 

mark- 

ers 

Best 

comb. 

results 

(%) 

Top 

weighted 

marker 

instances 

A 

(39/13) 

53.84 57 94.87 92,72,396,57,59, 

436,226,298,410, 

479,484,244,333, 

262,369,288,8 

B 

(38/13) 

55.27 57 94.74 176,39,494,2,13, 

228,11,47,19,412

,33,12,411,417, 

14,9,8,459,0,7 

C (17/5) 76.47 247 100.00 79,8,0 

D (12/3) 100.00 210,211

,212 

- - 

E (12/3) 100.00 210,211

,212 

- - 

F (60/9) 61.67 14,19 88.33 14,19,301 

G (6/2) 100.00 40,456, 

480 

- - 

H (3/3) 100.00 many* - - 

*351 markers could distinguish between all three documents in 

problem H. 

 



Interestingly, marker #292 is not highly weighted in 

any of the combined marker results. Marker #57 (median 

of complex words per document) is the highest weighted 

marker for problems A and B in the combined exercise. 

The attribution performance for problems A and B 

reaches 21 out of 39 and 38 respectively[7]. The training 

sets for A and B consist of short essays on various topics 

written by students. For problems with smaller number of 

documents such as D,E,G and H, there is usually at least 

one marker that can do perfect classification on the 

training docs. Thus, the combined method cannot exceed 

it.  

In this paper, we verified two important hypotheses: 

First, given a large set of individual markers, a few can 

be found that perform well on a particular set of corpora. 

Experiment 1 and Table V and VI show the best 

performing markers in our corpus set. Second, combining 

markers linearly using a weight vector often performs 

better than any individual marker on the same data set. 

However, for smaller sets, combining multiple markers 

may not be necessary.  

We agree with [6] that many problems in authorship 

attribution studies remain, including lack of 

standardization and specificity of markers and methods 

in the literature. Given the severe space limitations in 

scientific publications, we believe an important step to 

address some of these problems is to codify markers and 

extraction routines, complete with full parameterization. 

This should at least allow the chance to make meaningful 

and precise comparisons via referencing. 

Ongoing work includes further extending the 

taxonomy and making marker references more 

descriptive and uniform. We also are applying 

classification methods based on our markers to different 

corpora and are maintaining an extensive database of our 

findings. 

Table IIII. Glossary of markers discussed in this paper 

Code Marker instance  

0 Automated Readability Index (ARI) 

2 Flesch-Kinkaid Grade index (FKG) 

7 ratio of adjectives to all words 

8 ratio of adverbs to all words 

9 ratio of other  words (other than noun, verb, adjective 

and adverb) to all words 

11 ratio of plural nouns to all nouns 

12 ratio of past tense verbs to all verbs 

13 SMOG index 

14 frequency of most common character 

19 max. character bigram frequency 

31 avg. frequency of top 300 character 4-grams 

33 variance of top 300 character 4-grams 

39 max. characters per paragraph 

40 min. characters per paragraph 

44 max. characters per sentence 

47 med. characters per sentence 

57 med. complex words per document 

59 max. complex words per paragraph 

61 avg. complex words per paragraph 

72 med. number of unique GNU Diction rules applicable 

per document 

79 max. GNU Diction new sentence suggestions 

92 med. total number of diction suggestions per document 

152 med. number of possible misspellings per document 

169 max. numerics per document 

172 med. numerics per document 

176 avg. numerics per paragraph 

210 min. paragraphs per document 

211 avg. paragraphs per document 

212 med. paragraphs per document 

217 med. punctuations per document 

226 avg. punctuations per sentence 

228 variance of punctuations per sentence 

229 max. rejected words per document 

230 min. rejected words per document 

232 med. rejected words per document 

234 max. rejected words per paragraph 

236 avg. rejected words per paragraph 

244 max. sentences per document 

245 min. sentences per document 

257 med. stop words per document 

262 med. stop words per paragraph 

288 variance of syllables per word 

290 min. synsets per document 

292 med. synsets per document 

298 variance of synsets per paragraph 

301 avg. synsets per sentence 

310 min. Unix dictionary hits 

333 variance of vowels per sentence 

369 max. words per paragraph 

396 frequency of the word "go" 

410 frequency of the word "come" 

411 frequency of the word "made" 

412 frequency of the word "may" 

417 frequency of the word "little" 

436 frequency of the word "right" 

456 frequency of the word "must" 

459 frequency of the word "turn" 

479 frequency of the word "animal" 

480 frequency of the word "house" 

484 max. freq. of the most frequent English word 

494 ratio of total hapax legomena to all words 
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