
Comparison of Sentence-level Paraphrasing Approaches for Statistical Style

Transformation

Foaad Khosmood

Department of Computer Science, California Polytechnic State University, San Luis Obispo, California, USA

Abstract-- We present six distinct English-language

sentence paraphrasing techniques as transforms: Active-

to-Passive, Diction, Nodebox, Phrase, Simplify and Pivot

translation. We describe the basic algorithm for each

and score them on precision and recall using 50 random

sentences from project Tatoeba [1]. Our aim is to use

these techniques for style transformation.

Keywords: Computational Stylistics, Style Processcing,

Natural Langauge Processing, Machine Learning,

Computational Linguistics

1 INTRODUCTION

Statistical style transformation refers to an automatic

method of rewriting text such that the information content

remains the same, but the style of writing changes. Manual

style transformation has been done successfully in the past

[2]. In the absence of a precise universally accepted

nomenclature and litmus test for different writing styles in

natural languages, we define style as choice of expression

[3] such as that often associated with an author. As the

authorship attribution literature has shown, there are

distinguishable style markers that can be used to

successfully classify works by different authors [4][5] and

hence also isolate their “style”. Our approach uses this type

of classification as a litmus test for achieving style

transformation. This was done by Juola [6] already to

evaluate manual style obfuscation cases.
Our model requires sentence level paraphrases to be

continuously generated by modules (called transforms) and
scored based on a greedy algorithm. Whichever paraphrased
sentence would move the entire text statistically closest to
the target style, that sentence is adopted and becomes part of
the new text, but it could still be subject to further
substitutions.

2 TRANSFORMS

The transforms are implemented as Python classes. They
use various techniques such as typed dependency
reformulation [7] or web-based validation [8] to produce a
grammatical and synonymous sentence to the one they were
passed in. All the implementation and most of the algorithms
come from the authors, but external resources have been

used quite extensively as stated below. We briefly describe
each transforms.

2.1 Active to Passive transform (A2P)

Example: The boy kicked the ball. => The ball was

kicked by the boy.

This transform converts an active voice sentence into its

passive form. We encode 20 highly general rules in terms of

parts-of-speech for basic active voice and equivalent passive

voice cases [9][10]. The initial rules are mutated to produce

120 rules, adding variations to handle particles, adverbs and

complex noun phrases. The input sentence is parsed into

chunks using the Link Grammar Parser and compared with

all the patterns in the database, and if matched, converted

accordingly. Various NLP techniques are used to ensure

plurals, pronouns and subject/verb agreement.

2.2 Diction Transform

Example: The fact is, in the majority of cases, X is

defined as an unknown. => Usually X is an unknown.

This transforms employs a large number of rules for

substituting wordiness and “bad style” phrases with their

equivalent. The data sources are:

1. 655 rules from GNU Diction v. 1.11, itself based

on Elements of Style [11].

2. 658 “wordiness” rules from Steve Hanov

(Stevehanov.ca) partially based on William Zinsser's

On Writing Well.

3. 409 word/alternative pairs from The A to Z of

alternative words by the Plain English Campaign.

The rules are applied as straight string substitutions.

Many of the rules had to be modified manually by the

authors to remove “hints” and discussion originally

designed to be examined by users of word editing programs.

Some generic suggestions with no clear substitution

suggestions were removed altogether from the original set

of rules.

2.3 Nodebox transform

Example: We recieved 6533 boxes. => We received

thousands of boxes.

This transform is based on the Nodebox Linguistics

package [12]. It performs two tasks in particular: First, it

changes a set of unambiguous misspelled words, to their

correct equivalents. Second, it converts Arabic numerical

symbols modifying certain noun phrases into English

approximation phrases.

2.4 Phrase replacement transform (Phrase)

Example: I wanted to be with you alone => I desired to

be with you only.

This transform replaces phrases (defined as one or more

consecutive words) with synonyms. It uses the Stanford Part

of Speech Tagger to label each token in the phrase, and then

uses Word Net to find synonyms for each non-overlapping

phrase matching the POS in the input sentence.

For each phrase, this transform determines all the synsets

of the same sense using jcn distance [13] to do Word Sense

Disambiguation (WSD). The remaining candidates are

ranked using two criteria: probability of co-occurrence with

other words in the same sentence in the Microsoft BING N-

Gram database (all bigrams and trigrams crawled by BING

search engine) [14], and the probability of co-occurrence

with other words in the same sentence in the target corpus.

If the latter is not available, then only the search engine data

is used.

Once a suitable candidate is chosen, NLP tools are used

to produce the correct inflection before actual substitution.

Heavy use of NLTK NLP tools [15] was made for this

transform. The following figure summarizes the major steps

in this transform and external tools used to accomplish

them.

Figure 1. Phrase Transform

2.5 Simplify transform

Example: I love Luna who is very cute and who is my

pet. => I love Luna. Luna is very cute. Luna is my Pet.

This transform aims to simplify sentences on several

criteria, possibly producing more than one sentence as a

result. It is written by Advaith Siddharthan [7] mostly in

Perl, using the Stanford parser and the RASP toolkit. Two

additional rules and a Python wrapper are written by the

authors to integrate it into our evaluation system.

Simplify produces typed dependency trees for each

sentence and then runs its user-modifiable rules to match

patterns and adjust the final word order which could result

in more than one sentence. It examines conjunctions and

anaphora and looks for independent clauses that can be

separated into their own sentences.

2.6 Pivot translation transform

Example: I like to play Tennis. => I enjoy playing

Tennis.

This transform performs statistical translation by pivot:

It translates an English sentence into another language and

then translates the result back to English. The idea is that

automatic translation tools usually produce valid but slightly

modified sentences. A translation from English into another

language and back to English could provide a valid semantic

variation of the original with sufficient quality. Because of

the high likelihood that the very same string is retuned, this

transform accepts an ordered list of languages to try one at a

time until a response different than the input is found.

As the back-end statistical translator, it supports

Yahoo/Babelfish, Google Translator, and Microsoft

Translator. We found the Microsoft product to be the most

suitable for several reasons and we used it for this project.

3 METHODOLOGY

Fifty random English sentences are selected from the

project Tatoeba [1] corpus, and passed on to each transform.

Then each of the transforms produces responses consisting

of zero, one or more paraphrased sentences for each of the

input sentences. Some transforms such as Phrase, can

produce more than one alternative paraphrase. Others such

as Diction are highly specialized applying to few random

sentences. We produce 381 paraphrases for the original 50

sentences. Each of these is scored on the scale of 0 to 3 by

three separate human judges based on the following criteria.

Table 1. Evaluation criteria

Code Criteria

3 Sentence is modified, preserves original

meaning and original level of

grammaticality.

2 Sentence is unmodified, or barely

modified with very minor changes, or

modified and the result is “acceptable” but

not great.

1 Sentence is modified and the result is not

acceptable.

0 No response, machine error or

incomprehensible response.

4 RESULTS AND CONCLUDING REMARKS

Before the Pivot translation transform can be evaluated,

we must decide which of the supported languages to use and

how many languages to translate to before returning to

English. Through a separate process using human 2 judges,

we evaluate over 900 sentences using translation by pivot,

and determined an ordered set of 8 languages (out of a total

of 32 supported by Microsoft Translator) to use for the

translation transform. In order of decreased effectiveness,

they are: Czech, Swedish, Danish, Vietnamese, Norwegian,

Dutch, Portuguese, and Spanish.

In addition, we generate three baseline translation

“tours” (multiple language translations before returning to

English) for comparison purposes. Tour1 is English-

>French->Spanish->German->English. Trou2 is English-

>Danish->Portuguese->Swedish->Vietnamese->English.

TourR consists of English and four random languages.

All 381 paraphrases are scored for precision (majority

score of the 3 judges). We derive the relevant precision and

recall statistics as follows.

 “recall” is calculated by counting the number of

sentences for which the transform had a response

(other than the input), divided by the total number of

sentences, 50.

 “precision” is the average of all the (0-3) scores

given by human evaluators to any response of the

transform, across all sentences.

 “F-measure” is defined as

Table 2. Transform experiment evaluation results in terms of

precision, recall and F-measure

Transform Recall (%) Precision (%) F-measure

A2P 10 80 0.178

Diction 4 100 0.077

Nodebox 20 87 0.325

Phrase 100 82 0.903

Simplify 7.6 78 0.138

Translation 74 83 0.782

Tour 1 88 63 0.733

Tour 2 78 70 0.738

Tour R 88 58 0.702

Figure 2. Microsoft translator language performance

As observed from Fig. 3, the transforms can be generally

divided into two groups: high precision and high recall. The

transforms in the high precision group have unsurprisingly

low recall. This is because the patterns they generally seek

are very specific, such as the “wordiness” phrases in

Diction. The high recall group has more general pattern

matching. Every sentence contains at least one word that

would have a synonym in Word Net. Almost every sentence

would have at least one translated paraphrase from some

language.

We find that Phrase has the highest F-measure. But the

real goal for our work is not to find a single approach, but to

combine the power of different approaches to get a super-

0.000 0.500 1.000 1.500 2.000 2.500

ar

bg

cs

da

nl

et

fi

fr

de

el

ht

he

hu

id

it

ja

ko

lv

lt

no

pl

pt

ro

ru

sk

sl

es

sv

th

tr

uk

vi

transform of increased recall and precision. We are pursuing

future work in this area.

Table 3. Microsoft Translator supported language codes (ISO

639-2)

Code Language Code Language Code Language

ar Arabic he Hebrew ro Romanian

bg Bulgarian hu Hungarian ru Russian

cs Czech id Indonesian sk Slovak

da Danish it Italian sl Slovenian

nl Dutch ja Japanese es Spanish

et Estonian ko Korean sv Swedish

fi Finnish lv Latvian th Thai

fr French lt Lithuanian tr Turkish

de German no Norwegian uk Ukrainian

el Greek pl Polish vi Vietnamese

ht Haitian pt Portuguese

Figure 3. Precision and Recall for each transform

5 RFERENCES

[1] Project Tatoeba, English language sentence corpus (about
150,000 sentences). accessed from tatoeba.org, September
2010.

[2] D. L. Hoover. Language and style in The Inheritors,
University Press of America. 1999.

[3] Jane Walpole. “Style as Option,” College Composition
and Communication, vol. 31, No. 2, Recent Work in
Rhetoric: Discourse Theory, Invention, Arrangement,
Style, Audience. May, 1980. pp. 205-212.

[4] J. F. Burrows. ‘Delta’: A Measure of Stylistic Difference
and a Guide to Likely Authorship'. Literary and Linguistic
Computing. 17(3), 2002. pp. 267-87.

[5] D. L. Hoover. 'Testing Burrows’s Delta'. Literary and
Linguistic Computing. 19(4), 2004. pp. 453-75.

[6] Patrick Juola. “Empirical evaluation of authorship
obfuscation using JGAAP,” in Proceedings of the 3rd
ACM workshop on Artificial intelligence and security,
AISec, 2010.

[7] Advaith Siddharthan. “Complex lexico-syntactic
reformulation of sentences using typed dependency
representations”. In Proceedings of the 6th International
Natural Language Generation Conference (INLG 2010),
Dublin, Ireland. pp. 125-133.

[8] Houda Bouamor et. al. “Web-based validation for
contextual targeted paraphrasing,” Proceedings of the
ACL Workshop on Monolingual Text-To-Text Generation
2011.

[9] EnglishPage by Language Dynamics,
(www.englishpage.com), accessed Dec. 2010.

[10] Huddleston and Pullum. A Student’s Introduction to
English Grammar, Cambridge University Press, 2005.

[11] William Strunk. The elements of style, Ithaca, N.Y.: Priv.
print., 1918.

[12] Frederik De Bleser, Tom De Smedt, Lucas Nijs.
NodeBox version 1.9.5 for Mac OS X. Retrieved March
2010, from: http://nodebox.net

[13] Jiang, Jay and Conrath, David (1997). Semantic
similarity based on corpus statistics and lexical taxonomy.
In Proceedings of International Conference Research on
Computational Linguistics (ROCLING X), Taiwan.

[14] Micorsoft Web N-Gram service, public Beta program,
http://web-ngram.research.microsoft.com/info/ accessed
2011.

[15] Steven Bird, Ewan Klein, and Edward Loper, Natural
Language Processing with Python, O'Reilly Media. 2009.

0%

20%

40%

60%

80%

100%

120%

0% 50% 100% 150%

A2P

Diction

Nodebox

Phrase

Simplify

Translation

tour1

tour2

tourR

precision

recall

http://tatoeba.org/
http://web-ngram.research.microsoft.com/info/

