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Abstract-- We present six distinct English-language 

sentence paraphrasing techniques as transforms: Active-

to-Passive, Diction, Nodebox, Phrase, Simplify and Pivot 

translation.  We describe the basic algorithm for each 

and score them on precision and recall using 50 random 

sentences from project Tatoeba [1]. Our aim is to use 

these techniques for style transformation. 
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1 INTRODUCTION 

Statistical style transformation refers to an automatic 

method of rewriting text such that the information content 

remains the same, but the style of writing changes. Manual 

style transformation has been done successfully in the past 

[2]. In the absence of a precise universally accepted 

nomenclature and litmus test for different writing styles in 

natural languages, we define style as choice of expression 

[3] such as that often associated with an author. As the 

authorship attribution literature has shown, there are 

distinguishable style markers that can be used to 

successfully classify works by different authors [4][5] and 

hence also isolate their “style”. Our approach uses this type 

of classification as a litmus test for achieving style 

transformation. This was done by Juola [6] already to 

evaluate manual style obfuscation cases. 
Our model requires sentence level paraphrases to be 

continuously generated by modules (called transforms) and 
scored based on a greedy algorithm. Whichever paraphrased 
sentence would move the entire text statistically closest to 
the target style, that sentence is adopted and becomes part of 
the new text, but it could still be subject to further 
substitutions. 

2 TRANSFORMS 

The transforms are implemented as Python classes. They 
use various techniques such as typed dependency 
reformulation [7] or web-based validation [8] to produce a 
grammatical and synonymous sentence to the one they were 
passed in. All the implementation and most of the algorithms 
come from the authors, but external resources have been 

used quite extensively as stated below. We briefly describe 
each transforms. 

2.1 Active to Passive transform (A2P) 

Example: The boy kicked the ball. => The ball was 

kicked by the boy. 

This transform converts an active voice sentence into its 

passive form. We encode 20 highly general rules in terms of 

parts-of-speech for basic active voice and equivalent passive 

voice cases [9][10].  The initial rules are mutated to produce 

120 rules, adding variations to handle particles, adverbs and 

complex noun phrases. The input sentence is parsed into 

chunks using the Link Grammar Parser and compared with 

all the patterns in the database, and if matched, converted 

accordingly. Various NLP techniques are used to ensure 

plurals, pronouns and subject/verb agreement. 

2.2 Diction Transform 

Example: The fact is, in the majority of cases, X is 

defined as an unknown. => Usually X is an unknown. 

This transforms employs a large number of rules for 

substituting wordiness and “bad style” phrases with their 

equivalent. The data sources are: 

1. 655 rules from GNU Diction v. 1.11, itself based 

on Elements of Style [11]. 

2. 658 “wordiness” rules from Steve Hanov 

(Stevehanov.ca) partially based on William Zinsser's 

On Writing Well. 

3. 409 word/alternative pairs from The A to Z of 

alternative words by the Plain English Campaign. 

The rules are applied as straight string substitutions. 

Many of the rules had to be modified manually by the 

authors to remove “hints” and discussion originally 

designed to be examined by users of word editing programs. 

Some generic suggestions with no clear substitution 

suggestions were removed altogether from the original set 

of rules. 

2.3 Nodebox transform  

Example: We recieved 6533 boxes. => We received 

thousands of boxes. 

This transform is based on the Nodebox Linguistics 

package [12]. It performs two tasks in particular: First, it 



changes a set of unambiguous misspelled words, to their 

correct equivalents. Second, it converts Arabic numerical 

symbols modifying certain noun phrases into English 

approximation phrases. 

2.4 Phrase replacement transform (Phrase) 

Example: I wanted to be with you alone => I desired to 

be with you only. 

This transform replaces phrases (defined as one or more 

consecutive words) with synonyms. It uses the Stanford Part 

of Speech Tagger to label each token in the phrase, and then 

uses Word Net to find synonyms for each non-overlapping 

phrase matching the POS in the input sentence.  

For each phrase, this transform determines all the synsets 

of the same sense using jcn distance [13] to do Word Sense 

Disambiguation (WSD). The remaining candidates are 

ranked using two criteria: probability of co-occurrence with 

other words in the same sentence in the Microsoft BING N-

Gram database (all bigrams and trigrams crawled by BING 

search engine) [14], and the probability of co-occurrence 

with other words in the same sentence in the target corpus. 

If the latter is not available, then only the search engine data 

is used.  

Once a suitable candidate is chosen, NLP tools are used 

to produce the correct inflection before actual substitution. 

Heavy use of NLTK NLP tools [15] was made for this 

transform. The following figure summarizes the major steps 

in this transform and external tools used to accomplish 

them. 

 
Figure 1. Phrase Transform 

2.5 Simplify transform 

Example: I love Luna who is very cute and who is my 

pet. => I love Luna. Luna is very cute. Luna is my Pet. 

This transform aims to simplify sentences on several 

criteria, possibly producing more than one sentence as a 

result. It is written by Advaith Siddharthan [7] mostly in 

Perl, using the Stanford parser and the RASP toolkit. Two 

additional rules and a Python wrapper are written by the 

authors to integrate it into our evaluation system.  

Simplify produces typed dependency trees for each 

sentence and then runs its user-modifiable rules to match 

patterns and adjust the final word order which could result 

in more than one sentence. It examines conjunctions and 

anaphora and looks for independent clauses that can be 

separated into their own sentences. 

2.6 Pivot translation transform 

Example: I like to play Tennis. => I enjoy playing 

Tennis. 

This transform performs statistical translation by pivot: 

It translates an English sentence into another language and 

then translates the result back to English. The idea is that 

automatic translation tools usually produce valid but slightly 

modified sentences. A translation from English into another 

language and back to English could provide a valid semantic 

variation of the original with sufficient quality. Because of 

the high likelihood that the very same string is retuned, this 

transform accepts an ordered list of languages to try one at a 

time until a response different than the input is found.  

As the back-end statistical translator, it supports 

Yahoo/Babelfish, Google Translator, and Microsoft 

Translator. We found the Microsoft product to be the most 

suitable for several reasons and we used it for this project.  

3 METHODOLOGY 

Fifty random English sentences are selected from the 

project Tatoeba [1] corpus, and passed on to each transform. 

Then each of the transforms produces responses consisting 

of zero, one or more paraphrased sentences for each of the 

input sentences. Some transforms such as Phrase, can 

produce more than one alternative paraphrase. Others such 

as Diction are highly specialized applying to few random 

sentences. We produce 381 paraphrases for the original 50 

sentences. Each of these is scored on the scale of 0 to 3 by 

three separate human judges based on the following criteria. 

 
Table 1. Evaluation criteria 

Code Criteria 

3 Sentence is modified, preserves original 

meaning and original level of 

grammaticality. 

2 Sentence is unmodified, or barely 

modified with very minor changes, or 

modified and the result is “acceptable” but 

not great. 

1 Sentence is modified and the result is not 

acceptable. 

0 No response, machine error or 

incomprehensible response. 

 



4 RESULTS AND CONCLUDING REMARKS 

Before the Pivot translation transform can be evaluated, 

we must decide which of the supported languages to use and 

how many languages to translate to before returning to 

English. Through a separate process using human 2 judges, 

we evaluate over 900 sentences using translation by pivot, 

and determined an ordered set of 8 languages (out of a total 

of 32 supported by Microsoft Translator) to use for the 

translation transform. In order of decreased effectiveness, 

they are: Czech, Swedish, Danish, Vietnamese, Norwegian, 

Dutch, Portuguese, and Spanish. 

In addition, we generate three baseline translation 

“tours” (multiple language translations before returning to 

English) for comparison purposes. Tour1 is English-

>French->Spanish->German->English. Trou2 is English-

>Danish->Portuguese->Swedish->Vietnamese->English. 

TourR consists of English and four random languages.  

All 381 paraphrases are scored for precision (majority 

score of the 3 judges). We derive the relevant precision and 

recall statistics as follows.  

 “recall” is calculated by counting the number of 

sentences for which the transform had a response 

(other than the input), divided by the total number of 

sentences, 50. 

 “precision” is the average of all the (0-3) scores 

given by human evaluators to any response of the 

transform, across all sentences. 

 “F-measure” is defined as   
                    

                
  

 

Table 2. Transform experiment evaluation results in terms of 

precision, recall and F-measure 

Transform Recall (%) Precision (%) F-measure 

A2P 10 80 0.178 

Diction 4 100 0.077 

Nodebox 20 87 0.325 

Phrase 100 82 0.903 

Simplify 7.6 78 0.138 

Translation 74 83 0.782 

Tour 1 88 63 0.733 

Tour 2 78 70 0.738 

Tour R 88 58 0.702 

 

 

 
Figure 2. Microsoft translator language performance 

As observed from Fig. 3, the transforms can be generally 

divided into two groups: high precision and high recall. The 

transforms in the high precision group have unsurprisingly 

low recall. This is because the patterns they generally seek 

are very specific, such as the “wordiness” phrases in 

Diction. The high recall group has more general pattern 

matching. Every sentence contains at least one word that 

would have a synonym in Word Net. Almost every sentence 

would have at least one translated paraphrase from some 

language.  

We find that Phrase has the highest F-measure. But the 

real goal for our work is not to find a single approach, but to 

combine the power of different approaches to get a super-
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transform of increased recall and precision. We are pursuing 

future work in this area. 

 
Table 3. Microsoft Translator supported language codes (ISO 

639-2) 

Code Language Code Language Code Language 

ar Arabic he Hebrew ro Romanian 

bg Bulgarian hu Hungarian ru Russian 

cs Czech id Indonesian sk Slovak 

da Danish it Italian sl Slovenian 

nl Dutch ja Japanese es Spanish 

et Estonian ko Korean sv Swedish 

fi Finnish lv Latvian th Thai 

fr French lt Lithuanian tr Turkish 

de German no Norwegian uk Ukrainian 

el Greek pl Polish vi Vietnamese 

ht Haitian pt Portuguese   

 

 

 
Figure 3. Precision and Recall for each transform 
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